Objective This study was undertaken to assess the impact of immunosuppressive and immunomodulatory therapies on the severity of coronavirus disease 2019 (COVID‐19) in people with multiple sclerosis (PwMS). Methods We retrospectively collected data of PwMS with suspected or confirmed COVID‐19. All the patients had complete follow‐up to death or recovery. Severe COVID‐19 was defined by a 3‐level variable: mild disease not requiring hospitalization versus pneumonia or hospitalization versus intensive care unit (ICU) admission or death. We evaluated baseline characteristics and MS therapies associated with severe COVID‐19 by multivariate and propensity score (PS)‐weighted ordinal logistic models. Sensitivity analyses were run to confirm the results. Results Of 844 PwMS with suspected (n = 565) or confirmed (n = 279) COVID‐19, 13 (1.54%) died; 11 of them were in a progressive MS phase, and 8 were without any therapy. Thirty‐eight (4.5%) were admitted to an ICU; 99 (11.7%) had radiologically documented pneumonia; 96 (11.4%) were hospitalized. After adjusting for region, age, sex, progressive MS course, Expanded Disability Status Scale, disease duration, body mass index, comorbidities, and recent methylprednisolone use, therapy with an anti‐CD20 agent (ocrelizumab or rituximab) was significantly associated (odds ratio [OR] = 2.37, 95% confidence interval [CI] = 1.18–4.74, p = 0.015) with increased risk of severe COVID‐19. Recent use (<1 month) of methylprednisolone was also associated with a worse outcome (OR = 5.24, 95% CI = 2.20–12.53, p = 0.001). Results were confirmed by the PS‐weighted analysis and by all the sensitivity analyses. Interpretation This study showed an acceptable level of safety of therapies with a broad array of mechanisms of action. However, some specific elements of risk emerged. These will need to be considered while the COVID‐19 pandemic persists. ANN NEUROL 2021;89:780–789
Background In patients with Multiple Sclerosis (pwMS) disease-modifying therapies (DMTs) affects immune response to antigens. Therefore, post-vaccination serological assessments are needed to evaluate the effect of the vaccine on SARS-CoV-2 antibody response. Methods We designed a prospective multicenter cohort study enrolling pwMS who were scheduled for SARS-Cov-2 vaccination with mRNA vaccines (BNT162b2, Pfizer/BioNTech,Inc or mRNA-1273, Moderna Tx,Inc). A blood collection before the first vaccine dose and 4 weeks after the second dose was planned, with a centralized serological assessment (electrochemiluminescence immunoassay, ECLIA, Roche-Diagnostics). The log-transform of the antibody levels was analyzed by multivariable linear regression. Findings 780 pwMS (76% BNT162b2 and 24% mRNA-1273) had pre- and 4-week post-vaccination blood assessments. 87 (11·2%) were untreated, 154 (19·7%) on ocrelizumab, 25 (3·2%) on rituximab, 85 (10·9%) on fingolimod, 25 (3·2%) on cladribine and 404 (51·7%) on other DMTs. 677 patients (86·8%) had detectable post-vaccination SARS-CoV-2 antibodies. At multivariable analysis, the antibody levels of patients on ocrelizumab (201-fold decrease (95%CI=128–317), p < 0·001), fingolimod (26-fold decrease (95%CI=16–42), p < 0·001) and rituximab (20-fold decrease (95%CI=10–43), p < 0·001) were significantly reduced as compared to untreated patients. Vaccination with mRNA-1273 resulted in a systematically 3·25-fold higher antibody level (95%CI=2·46–4·27) than with the BNT162b2 vaccine ( p < 0·001). The antibody levels on anti-CD20 therapies correlated to the time since last infusion, and rituximab had longer intervals (mean=386 days) than ocrelizumab patients (mean=129 days). Interpretation In pwMS, anti-CD20 treatment and fingolimod led to a reduced humoral response to mRNA-based SARS-CoV-2 vaccines. As mRNA-1273 elicits 3·25-higher antibody levels than BNT162b2, this vaccine may be preferentially considered for patients under anti-CD20 treatment or fingolimod. Combining our data with those on the cellular immune response to vaccines, and including clinical follow-up, will contribute to better define the most appropriate SARS-CoV-2 vaccine strategies in the context of DMTs and MS. Funding FISM[2021/Special-Multi/001]; Italian Ministry of Health‘Progetto Z844A 5 × 1000′.
Hepatitis C virus (HCV) infection is considered a systemic disease because of involvement of other organs and tissues concomitantly with liver disease. Among the extrahepatic manifestations, neuropsychiatric disorders have been reported in up to 50% of chronic HCV infected patients. Both the central and peripheral nervous system may be involved with a wide variety of clinical manifestations. Main HCV-associated neurological conditions include cerebrovascular events, encephalopathy, myelitis, encephalomyelitis, and cognitive impairment, whereas "brain fog", depression, anxiety, and fatigue are at the top of the list of psychiatric disorders. Moreover, HCV infection is known to cause both motor and sensory peripheral neuropathy in the context of mixed cryoglobulinemia, and has also been recently recognized as an independent risk factor for stroke. These extrahepatic manifestations are independent of severity of the underlying chronic liver disease and hepatic encephalopathy. The brain is a suitable site for HCV replication, where the virus may directly exert neurotoxicity; other mechanisms proposed to explain the pathogenesis of neuropsychiatric disorders in chronic HCV infection include derangement of metabolic pathways of infected cells, alterations in neurotransmitter circuits, autoimmune disorders, and cerebral or systemic inflammation. A pathogenic role for HCV is also suggested by improvement of neurological and psychiatric symptoms in patients achieving a sustained virologic response following interferon treatment; however, further ad hoc trials are needed to fully assess the impact of HCV infection and specific antiviral treatments on associated neuropsychiatric disorders.
Greater benefits on disability progression may be obtained by an early IFNbeta treatment in RRMS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.