In recent years, jellyfish blooms have attracted considerable scientific interest for their potential impacts on human activities and ecosystem functioning, with much attention paid to jellyfish as predators and to gelatinous biomass as a carbon sink. Other than qualitative data and observations, few studies have quantified direct predation of fish on jellyfish to clarify whether they may represent a seasonally abundant food source. Here we estimate predation frequency by the commercially valuable Mediterranean bogue, Boops boops on the mauve stinger jellyfish, Pelagia noctiluca, in the Strait of Messina (NE Sicily). A total of 1054 jellyfish were sampled throughout one year to quantify predation by B. boops from bite marks on partially eaten jellyfish and energy density of the jellyfish. Predation by B. boops in summer was almost twice that in winter, and they selectively fed according to medusa gender and body part. Calorimetric analysis and biochemical composition showed that female jellyfish gonads had significantly higher energy content than male gonads due to more lipids and that gonads had six-fold higher energy content than the somatic tissues due to higher lipid and protein concentrations. Energetically, jellyfish gonads represent a highly rewarding food source, largely available to B. boops throughout spring and summer. During the remainder of the year, when gonads were not very evident, fish predation switched towards less-selective foraging on the somatic gelatinous biomass. P. noctiluca, the most abundant jellyfish species in the Mediterranean Sea and a key planktonic predator, may represent not only a nuisance for human leisure activities and a source of mortality for fish eggs and larvae, but also an important resource for fish species of commercial value, such as B. boops.
Deep-sea coral assemblages are key components of marine ecosystems that generate habitats for fish and invertebrate communities and act as marine biodiversity hot spots. Because of their life history traits, deep-sea corals are highly vulnerable to human impacts such as fishing. They are an indicator of vulnerable marine ecosystems (VMEs), therefore their conservation is essential to preserve marine biodiversity. In the Mediterranean Sea deep-sea coral habitats are associated with commercially important crustaceans, consequently their abundance has dramatically declined due to the effects of trawling. Marine spatial planning is required to ensure that the conservation of these habitats is achieved. Species distribution models were used to investigate the distribution of two critically endangered octocorals (Funiculina quadrangularis and Isidella elongata) in the central Mediterranean as a function of environmental and fisheries variables. Results show that both species exhibit species-specific habitat preferences and spatial patterns in response to environmental variables, but the impact of trawling on their distribution differed. In particular F. quadrangularis can overlap with fishing activities, whereas I. elongata occurs exclusively where fishing is low or absent. This study represents the first attempt to identify key areas for the protection of soft and compact mud VMEs in the central Mediterranean Sea.
Discarding in fisheries is believed to be a waste of natural resources, as it is the part of the total catch brought on board but then returned to the sea dead or alive for any reason. This study aims to advance knowledge of the discards associated with the deep water rose shrimp fisheries in the south-central Mediterranean Sea. We address this issue by examining the data collected within the module of commercial catch monitoring (Campbiol) of European data collection framework (DCF) between January 2009 and December 2013. Multivariate data analysis and the generalized additive model (GAMs) were used to assess the spatio-temporal composition of the discard and factors influencing its distribution. Overall, discard represented 32.9±15.4% of the total catch. Multiple analysis of variance highlighted the significant effect on discard assemblage only for the factor of depth (p-value <0.05). In general, bony fish were the most discarded organisms (23.5±14.4%). Cartilaginous fish, crustaceans and other invertebrates represented approximately 13% of the total catch. The fraction of discard in the catch presented significant variation regarding the years, depth and fishing ground. Our results showed that most of the discards in the deep water rose shrimp (DPS) fisheries are due to species that have a minimum legal size (Hake, DPS, Trachurus spp.), and are consequently subjected to the discard ban (art. 15 of the reg. EU 1380/2013). To avoid the landing of discards, specific measures aimed to minimize the unwanted catches of undersized species should be implemented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.