In recent years, the application of nanotechnology for the development of new “smart fertilizers” is regarded as one of the most promising solutions for boosting a more sustainable and modern grapevine cultivation. Despite showing interesting potential benefits over conventional fertilization practices, the use of nanofertilizers in viticulture is still underexplored. In this work, we investigated the effectiveness of non-toxic calcium phosphate nanoparticles (Ca3(PO4)2∙nH2O) doped with urea (U-ACP) as a nitrogen source for grapevine fertilization. Plant tests were performed for two years (2019–2020) on potted adult Pinot gris cv. vines grown under semi-controlled conditions. Four fertilization treatments were compared: N1: commercial granular fertilization (45 kg N ha−1); N2: U-ACP applied in fertigation (36 kg N ha−1); N3: foliar application of U-ACP (36 kg N ha−1); C: control, receiving no N fertilization. Plant nitrogen status (SPAD), yield parameters as well as those of berry quality were analyzed. Results here presented clearly show the capability of vine plants to recognize and use the nitrogen supplied with U-ACP nanoparticles either when applied foliarly or to the soil. Moreover, all of the quali–quantitative parameters measured in vine plants fed with nanoparticles were perfectly comparable to those of plants grown in conventional condition, despite the restrained dosage of nitrogen applied with the nanoparticles. Therefore, these results provide both clear evidence of the efficacy of U-ACP nanoparticles as a nitrogen source and the basis for the development of alternative nitrogen fertilization strategies, optimizing the dosage/benefit ratio and being particularly interesting in a context of a more sustainable and modern viticulture.
At present, the quest for innovative and sustainable fertilization approaches aiming to improve agricultural productivity represents one of the major challenges for research. In this context, nanoparticle-based fertilizers can indeed offer an interesting alternative with respect to traditional bulk fertilizers. Several pieces of evidence have already addressed the effectiveness of amorphous calcium phosphate-based nanoparticles as carriers for macronutrients, such as nitrogen (N), demonstrating increase in crop productivity and improvement in quality. Nevertheless, despite N being a fundamental nutrient for crop growth and productivity, very little research has been carried out to understand the physiological and molecular mechanisms underpinning N-based fertilizers supplied to plants via nanocarriers. For these reasons, this study aimed to investigate the responses of Cucumis sativus L. to amorphous calcium phosphate nanoparticles doped with urea (U-ACP). Urea uptake dynamics at root level have been investigated by monitoring both the urea acquisition rates and the modulation of urea transporter CsDUR3, whereas growth parameters, the accumulation of N in both root and shoots, and the general ionomic profile of both tissues have been determined to assess the potentiality of U-ACP as innovative fertilizers. The slow release of urea from nanoparticles and/or their chemical composition contributed to the upregulation of the urea uptake system for a longer period (up to 24 h after treatment) as compared to plants treated with bulk urea. This prolonged activation was mirrored by a higher accumulation of N in nanoparticle-treated plants (approximately threefold increase in the shoot of NP-treated plants compared to controls), even when the concentration of urea conveyed through nanoparticles was halved. In addition, besides impacting N nutrition, U-ACP also enhanced Ca and P concentration in cucumber tissues, thus having possible effects on plant growth and yield, and on the nutritional value of agricultural products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.