Significant progresses have been made to understand the molecular basis of the Sigma1 receptor (S1R) operating in normal and pathological conditions. S1R is a transmembrane protein that participates in a wide variety of processes at the central nervous system; hence, its function has been associated with mental and neurological disorders. Several ligands have been proposed to regulate the function of S1R revealing a high plasticity of the ligand-binding pocket. Previous drug-design studies have been mainly based on pharmacophore models; however, the recently revealed crystal structure of S1R provides an excellent opportunity for verifying previous predictions and for evaluating the binding of novel compounds. Interestingly, the crystal structure shows that the binding pocket of S1R is highly occluded from solvent; therefore, it is not clear how ligands access this site. In the present work, we applied steered molecular dynamics (SMD) simulations to open the occluded ligand-binding pocket in the S1R crystal structure and to determine the preferred ligand pathway to enter and exit the binding site. The intracellular surface of the β-barrel ligand-binding region was found the most favorable route to accommodate ligands. This route supports the binding of and a new bivalent derivative that constitutes the first divalent structure shown to interact with S1R. Free energy calculations of these compounds associated with S1R agree with experimental K i values and provide molecular insights of the binding mode of modulators that could access the S1R ligand-binding pocket through the cytoplasmic region.
Over the last 30 years, the scientific community has directed its efforts towards the identification of enantioselective approaches to obtain the desired active enantiomer. Accordingly, efficient production of single enantiomers from small to large scale, throughout Drug Discovery (DD) programs, has become of great interest and a fundamental challenge. Areas covered: This review focuses on two fundamental strategies for preparing enantiomers in high yields and with an excellent enantiomeric excess (ee). Separation of racemates, enantioselective synthesis procedures, and integrated approaches have been extensively reviewed, to offer a guide that enables the selection of the suitable methodology for producing pure enantiomers in scales from small to large. Expert opinion: Over the past two decades, drug regulatory agencies have set strict rules on the use of racemates and pure enantiomers, leading to the transformation of the drug market. Indeed, the number of drugs approved as a single enantiomer has exponentially increased, outclassing the racemic compounds. As a consequence, the academia and pharmaceutical companies are eager to develop efficient procedures for obtaining enantiopure compounds on the desired scale.
Sigma-1 receptors (S1Rs) are strongly correlated to neuropathic pain (NP), since their inactivation may decrease allodynia or dysesthesia, promoting analgesic effects. In the recent patent landscape, S1R antagonists endowed with nanomolar S1Rs affinity emerged as potent antinociceptive agents. So far, three patented compounds have been proposed for counteracting NP. Particularly PV-752 and AV1066, disclosed by the University of Pavia (Italy) and Anavex, respectively, showed good analgesic activity in preclinical studies. Moreover, E-52862 developed by Esteve (Spain) has been proved to be effective, both in preclinical and Phase II clinical trials, against several symptoms of NP. These patents ascertain S1R antagonists as potential drugs, alone or in combination with other analgesic drugs, for managing NP in humans.
The human Sigma1 receptor (S1R), which has been identified as a target with an important role in neuropsychological disorders, was first crystallized 3 years ago. Since S1R structure has no relation with another previous crystallized structures, the presence of the new crystal is an important hallmark for the design of agonists and antagonists against this important target. Some years ago, our group identified RC-33, a potent and selective S1R agonist, endowed with neuroprotective properties. In this work, drawing on new structural information, we studied the interactions of RC-33 and its analogs with the S1R binding site by using computational methods such as docking, interaction fingerprints, and receptor-guided alignment three dimensional quantitative structure–activity relationship (3D-QSAR). We found that RC-33 and its analogs adopted similar orientations within S1R binding site, with high similitude with orientations of the crystallized ligands; such information was used for identifying the residues involved in chemical interactions with ligands. Furthermore, the structure-activity relationship of the studied ligands was adequately described considering classical QSAR tests. All relevant aspects of the interactions between the studied compounds and S1R were covered here, through descriptions of orientations, binding interactions, and features that influence differential affinities. In this sense, the present results could be useful in the future design of novel S1R modulators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.