In this paper, the rotational variable stiffness actuator vsaUT-II is presented. This actuation system is characterized by the property that the apparent stiffness at the actuator output can be varied independently from its position. This behavior is realized by implementing a variable transmission ratio between the internal elastic elements and the actuator output, i.e., a lever arm with variable pivot point position. The pivot point is moved by a planetary gears mechanism, which acquires a straight motion from only rotations, thereby providing a low-friction transmission. The working principle details of the vsaUT-II are elaborated and the design is presented. The actuator dynamics are described by means of a lumped parameter model. The relevant parameters of the actuator are estimated and identified in the physical setup and measurements are used to validate both the design and the derived model.
In this paper, the vsaUT-II, a novel rotational variable stiffness actuator, is presented. As the other designs in this class of actuation systems, the vsaUT-II is characterized by the property that the output stiffness can be changed independently of the output position. It consists of two internal elastic elements and two internal actuated degrees of freedom. The mechanical design of the vsaUT-II is such that the apparent output stiffness can be varied by changing the transmission ratio between the elastic elements and the output. This kinematic structure guarantees that the output stiffness can be changed without changing the potential energy stored internally in the elastic elements. This property is validated in simulations with the port-based model of the system and in experiments, through a proper control law design, on the prototype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.