A three degrees-of-freedom model based on the potential flow theory was implemented to represent the motion of a slender cylindrical buoy under waves. The model calibration was performed by means of the comparison between the model results and the experiments performed at the Laboratory of Hydraulic Engineering of the University of Bologna (Italy). The dynamics of the floating cylinder, placed at the mid-section of the wave flume and anchored at the bottom through a mooring system of four catenaries, were obtained through videography analysis, providing surge, heave and pitch motions. The implementation of the mathematical model consisted of two main parts: The first has been developed in the frequency domain by applying NEMOH to assess the hydrodynamic coefficients of the object, i.e., the excitation, radiation and added mass coefficients; then, the used mooring system was included in the time-domain model, solving the motion of the floating cylinder, by calibrating the mooring coefficients by comparing the results with the data. The simplicity of the implemented model is a very important feature, and it should be used as a preliminary study to understand the response of moored floating cylinders and others floating bodies under waves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.