Positronium atoms (Ps) are widely used as a probe to characterize voids or vacancies in non-metallic materials. The annihilation lifetime of trapped Ps is strongly modified by pickoff, depending on the cavity size and on the appropriate external electron density. The connection between these material characteristics and Ps annihilation lifetimes is usually based on models that do not consider the requirements of full electron indistinguishability, that must be taken into account for a correct description of pickoff annihilation processes. In this report we provide a formal theoretical framework in which exchange correlation effects between confined Ps and surrounding electrons are introduced in a natural way, giving a clear and versatile picture of the various contributions to pickoff annihilation. Moreover, our results provide a simple explanation of the lowering of the contact density (the Ps-electron density at the positron position) as a direct consequence of the electrons indistinguishability, at variance with previous interpretation based on spatial deformations of Ps wavefunction. Calculations are performed within the "symmetry adapted perturbation theory" approach, and the results are compared with available experimental data on Ps lifetimes for polymers and molecular solids. Finally, our analysis gives a formal justification to the approximations involved in early models based on the well known Tao-Eldrup approach, and gives a simple interpretation of Ps properties in subnanometric voids.
The positronium atom (Ps) is widely used as a probe to characterize nanoporous and mesoporous materials. Existing theoretical models for describing Ps annihilation rates by pick-off processes generally treat Ps as a point particle confined in a potential well. Hence these models do not justify any change in the internal structure of Ps, which is experimentally accessible by means of the contact density parameter. Recently we formulated a twoparticle model in which only the electron is confined in the cavity, while the positron is moving freely and feels the medium via a positive work function. We present here a numerical treatment of the problem of calculating contact densities and pick-off annihilation rates, by using a variational method. Results are in agreement with experimental data for a large class of materials, and suggest a way to connect these data with pore sizes and positron work functions.
Positronium atoms (Ps) are commonly employed as a probe to characterize nanometric or subnanometric voids or vacancies in nonmetallic materials, where Ps can end up confined. The annihilation lifetime of a trapped Ps is strongly modified by pickoff and depends on the cavity size and on the electron density in the confining cavity surface. Here, we develop a theory of the Ps annihilation in nanocavities based on the fundamental role of the exchange correlations between the Ps-electron and the outer electrons, which are not usually considered but must be considered to correctly theorize the pickoff annihilation processes. We obtain an important relation connecting the two relevant annihilation rates (for the p-Psand the o-Ps) with the electron density, which has the property of being totally independent of the geometrical characteristics of the nanoporous medium. This general relation can be used to gather information on the electron density and on the average cavity radius of the confining medium, starting from the experimental data on PALS annihilation spectra. Moreover, by analyzing our results, we also highlight that a reliable interpretation of the PALS spectra can only be obtained if the rule of 1/3 between the intensities of p-Psand o-Pslifetimes can be fulfilled.
A density functional theory study of the electronic structure of nanostructures based on the hexagonal layers of LuI 3 is reported. Both bulk and slabs with one to three layers exhibit large and indirect bandgaps. Different families of nanotubes can be generated from these layers. Semiconducting nanotubes of two different chiralities have been studied. The direct or indirect nature of the optical gaps depends on the chirality, and a simple rationalization of this observation based on band folding arguments is provided. Remarkably, a metastable form of the armchair LuI 3 nanotubes can be obtained under a structural rearrangement such that some iodine atoms are segregated toward the center of the nanotube forming chains of dimerized iodines. These nanotubes having an Lu 2 N I 5 N backbone are predicted to be metallic and should be immune toward a Peierls distortion. The iodine chains in the inner part of the nanotubes are weakly bound to the backbone so that it should be possible to remove these chains to generate a new series of neutral Lu 2 N I 5 N nanotubes which could exhibit interesting magnetic behavior. Because the LuI 3 structure occurs for a large number of lanthanide and actinide trihalides, a tuning of the optical, transport, and probably magnetic properties of these new families of nanotubes can be a challenging prospect for future experimental studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.