Rationale : The sympathetic nervous system plays a fundamental role in the regulation of myocardial function. During chronic pressure overload, overactivation of the sympathetic nervous system induces the release of catecholamines, which activate β-adrenergic receptors in cardiomyocytes and lead to increased heart rate and cardiac contractility. However, chronic stimulation of β-adrenergic receptors leads to impaired cardiac function, and β-blockers are widely used as therapeutic agents for the treatment of cardiac disease. MicroRNA-133 (miR-133) is highly expressed in the myocardium and is involved in controlling cardiac function through regulation of messenger RNA translation/stability. Objective : To determine whether miR-133 affects β-adrenergic receptor signaling during progression to heart failure. Methods and Results : Based on bioinformatic analysis, β 1 -adrenergic receptor (β 1 AR) and other components of the β 1 AR signal transduction cascade, including adenylate cyclase VI and the catalytic subunit of the cAMP-dependent protein kinase A, were predicted as direct targets of miR-133 and subsequently validated by experimental studies. Consistently, cAMP accumulation and activation of downstream targets were repressed by miR-133 overexpression in both neonatal and adult cardiomyocytes following selective β 1 AR stimulation. Furthermore, gain-of-function and loss-of-function studies of miR-133 revealed its role in counteracting the deleterious apoptotic effects caused by chronic β 1 AR stimulation. This was confirmed in vivo using a novel cardiac-specific TetON-miR-133 inducible transgenic mouse model. When subjected to transaortic constriction, TetON-miR-133 inducible transgenic mice maintained cardiac performance and showed attenuated apoptosis and reduced fibrosis compared with control mice. Conclusions : miR-133 controls multiple components of the β 1 AR transduction cascade and is cardioprotective during heart failure.
ObjectiveRisk stratification is crucial to optimise treatment strategies in patients with COVID-19. We aimed to evaluate the impact on mortality of an early assessment of cardiac biomarkers in patients with COVID-19.MethodsHumanitas Clinical and Research Hospital (Rozzano-Milan, Lombardy, Italy) is a tertiary centre that has been converted to the management of COVID-19. Patients with confirmed COVID-19 were entered in a dedicated database for cohort observational analyses. Outcomes were stratified according to elevated levels (ie, above the upper level of normal) of high-sensitivity cardiac troponin I (hs-TnI), B-type natriuretic peptide (BNP) or both measured within 24 hours after hospital admission. The primary outcome was all-cause mortality.ResultsA total of 397 consecutive patients with COVID-19 were included up to 1 April 2020. At the time of hospital admission, 208 patients (52.4%) had normal values for cardiac biomarkers, 90 (22.7%) had elevated both hs-TnI and BNP, 59 (14.9%) had elevated only BNP and 40 (10.1%) had elevated only hs-TnI. The rate of mortality was higher in patients with elevated hs-TnI (22.5%, OR 4.35, 95% CI 1.72 to 11.04), BNP (33.9%, OR 7.37, 95% CI 3.53 to 16.75) or both (55.6%, OR 18.75, 95% CI 9.32 to 37.71) as compared with those without elevated cardiac biomarkers (6.25%). A multivariate analysis identified concomitant elevation of both hs-TnI and BNP as a strong independent predictor of all-cause mortality (OR 3.24, 95% CI 1.06 to 9.93).ConclusionsAn early detection of elevated hs-TnI and BNP predicts mortality in patients with COVID-19. Cardiac biomarkers should be systematically assessed in patients with COVID-19 at the time of hospital admission in order to optimise risk stratification.
Reactive oxygen species (ROS) affect many cellular functions and the proper redox balance between ROS and antioxidants contributes substantially to the physiological welfare of the cell. During pathological conditions, an altered redox equilibrium leads to increased production of ROS that in turn may cause oxidative damage. MicroRNAs (miRNAs) regulate gene expression at the post-transcriptional level contributing to all major cellular processes, including oxidative stress and cell death. Several miRNAs are expressed in response to ROS to mediate oxidative stress. Conversely, oxidative stress may lead to the upregulation of miRNAs that control mechanisms to buffer the damage induced by ROS. This review focuses on the complex crosstalk between miRNAs and ROS in diseases of the cardiac (i.e., cardiac hypertrophy, heart failure, myocardial infarction, ischemia/reperfusion injury, diabetic cardiomyopathy) and pulmonary (i.e., idiopathic pulmonary fibrosis, acute lung injury/acute respiratory distress syndrome, asthma, chronic obstructive pulmonary disease, lung cancer) compartments. Of note, miR-34a, miR-144, miR-421, miR-129, miR-181c, miR-16, miR-31, miR-155, miR-21, and miR-1/206 were found to play a role during oxidative stress in both heart and lung pathologies. This review comprehensively summarizes current knowledge in the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.