An elbow assisting device is presented as based on a cable-driven parallel mechanism with design solutions that are improvements from a previous original design. The new mechanism, ideal for domestic use, both for therapies and exercises, is characterized by low-cost, portable, easy-to-use features that are evaluated through numerical simulations and experimental tests whose results are reported with discussions.
Cable robots are widely used in the field of rehabilitation. These robots differ from other cable robots because the cables are rather short and are usually equipped with magnetic hooks to improve the ease of use. The vibrations of rehabilitation robots are dominated by the effects of the hooks and payloads, whereas the cables behave as massless springs. In this paper, a 2D model of the cables of a robot that simulates both longitudinal and transverse vibrations is developed and experimentally validated. Then the model is extended to simulate the vibrations of an actual 3D robot in the symmetry planes. Finally, the calculated modal properties (natural frequencies and modes of vibration) are compared with the typical spectrum of excitation due to the cable’s motion. Only the first transverse mode can be excited during the rehabilitation exercise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.