Eradicating the malignant stem cell is the ultimate challenge in the treatment of leukaemia. Leukaemic stem cells (LSC) hijack the normal haemopoietic niche, where they are mainly protected from cytotoxic drugs. The anti-leukaemic effect of L-asparaginase (ASNase) has been extensively investigated in acute lymphoblastic leukaemia, but only partially in acute myeloid leukaemia (AML). We explored the susceptibility of AML-LSC to ASNase as well as the role of the two major cell types that constitute the bone marrow (BM) microenvironment, i.e., mesenchymal stromal cells (MSC) and monocytes/macrophages. Whilst ASNase was effective on both CD34 + CD38 + and CD34 + CD38 À LSC fractions, MSC and monocytes/ macrophages partially counteracted the effect of the drug. Indeed, the production of cathepsin B, a lysosomal cysteine protease, by BM monocytic cells and by AML cells classified as French-American-British M5 is related to the inactivation of ASNase. Our work demonstrates that, while MSC and monocytes/macrophages may provide a protective niche for AML cells, ASNase has a cytotoxic effect on AML blasts and, importantly, LSC subpopulations. Thus, these features should be considered in the design of future clinical studies aimed at testing ASNase efficacy in AML patients.
Overall, the human organism requires the production of ∼1 trillion new blood cells per day. Such goal is achieved via hematopoiesis occurring within the bone marrow (BM) under the tight regulation of hematopoietic stem and progenitor cell (HSPC) homeostasis made by the BM microenvironment. The BM niche is defined by the close interactions of HSPCs and non-hematopoietic cells of different origin, which control the maintenance of HSPCs and orchestrate hematopoiesis in response to the body’s requirements. The activity of the BM niche is regulated by specific signaling pathways in physiological conditions and in case of stress, including the one induced by the HSPC transplantation (HSCT) procedures. HSCT is the curative option for several hematological and non-hematological diseases, despite being associated with early and late complications, mainly due to a low level of HSPC engraftment, impaired hematopoietic recovery, immune-mediated graft rejection, and graft-versus-host disease (GvHD) in case of allogenic transplant. Mesenchymal stromal cells (MSCs) are key elements of the BM niche, regulating HSPC homeostasis by direct contact and secreting several paracrine factors. In this review, we will explore the several mechanisms through which MSCs impact on the supportive activity of the BM niche and regulate HSPC homeostasis. We will further discuss how the growing understanding of such mechanisms have impacted, under a clinical point of view, on the transplantation field. In more recent years, these results have instructed the design of clinical trials to ameliorate the outcome of HSCT, especially in the allogenic setting, and when low doses of HSPCs were available for transplantation.
Mucopolysaccharidosis type I (MPSI) (OMIM #252800) is an autosomal recessive disorder caused by pathogenic variants in the IDUA gene encoding for the lysosomal alpha-L-iduronidase enzyme. The deficiency of this enzyme causes systemic accumulation of glycosaminoglycans (GAGs). Although disease manifestations are typically not apparent at birth, they can present early in life, are progressive, and include a wide spectrum of phenotypic findings. Among these, the storage of GAGs within the lysosomes disrupts cell function and metabolism in the cartilage, thus impairing normal bone development and ossification. Skeletal manifestations of MPSI are often refractory to treatment and severely affect patients’ quality of life. This review discusses the pathological and molecular processes leading to impaired endochondral ossification in MPSI patients and the limitations of current therapeutic approaches. Understanding the underlying mechanisms responsible for the skeletal phenotype in MPSI patients is crucial, as it could lead to the development of new therapeutic strategies targeting the skeletal abnormalities of MPSI in the early stages of the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.