In the frame of the MICADO H2020 project, a passive and active neutron measurement system is being developed to estimate the nuclear material mass inside legacy waste drums of low and intermediate radioactivity levels. Monte-Carlo simulations have been performed to design a new modular and transportable neutron system, with the main objective to reach a good tradeoff between the performances in passive mode, i.e. neutron coincidence counting, and in active interrogation mode with the Differential Die-away Technique. Different designs are compared, which mainly differ in their moderation materials, graphite and polyethylene. This parametric study allowed us to define a prototype taking into account practical constraints in view of its final implementation in a wide range of in-situ locations and nuclear facilities. The total neutron detection efficiency of the prototype is 6.75%, as calculated for an empty drum, i.e. without waste matrix. The detection limit in terms of nuclear material equivalent mass have also been estimated based on assumptions for a homogeneous distribution of nuclear materials inside the drum, filled with four types of matrices covering the range of nuclear waste drums defined in the frame of the project. The most favorable matrix is made of stainless steel in passive mode and of polyethylene in active mode, with an apparent density of 0.7 g.cm -3 and 0.1 g.cm -3 , respectively. The calculated mass detection limits are respectively 68 mg of 240 Pu, 62 mg of 235 U and 39 mg of 239 Pu. The most penalizing matrix is made of polyethylene with an apparent density of 0.7 g.cm -3 , which leads to a mass detection limit of 519 mg of 240 Pu in passive mode, and 564 mg of 235 U or 349 mg of 239 Pu in active mode. Measurement time is 30 min for both passive and active modes. Next steps will be a complete investigation of matrix effects based on intensive Monte-Carlo calculations and an experimental design to figure out the appropriate corrections. Experiments will also be conducted at CEA Cadarache Nuclear Measurement Laboratory with the construction and the assembly of the neutron system prototype, and the measurement of mock-up drums filled with different matrices. I.
Abstract:The Italian National Agency for New Technologies, Energy, and Sustainable Economic Development (ENEA) Neutron Active Interrogation (NAI) device is a tool designed to improve CBRNE defense. It is designed to uncover radioactive and nuclear threats including those in the form of Improvised Explosive Devices (IEDs), the so-called "dirty bombs". The NAI device, at its current development stage, allows to detect 6 g of 235 U hidden in a package. It is easily transportable, light in weight, and with a real-time response. Its working principle is based on two stages: (1) an "active" stage in which neutrons are emitted by a neutron generator to interact with the item under inspection, and (2) a "passive" stage in which secondary neutrons are detected originating a signal that, once processed, allows recognition of the offence. In particular, a clear indication of the potential threat is obtained by a dedicated software based on the Differential Die-Away Time Analysis method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.