Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in Western countries and expose patients to increased risk of hepatic and cardiovascular (CV) morbidity and mortality. Both environmental factors and genetic predisposition contribute to the risk. An inappropriate diet, rich in refined carbohydrates, especially fructose, and saturated fats, and poor in fibers, polyunsaturated fats, and vitamins is one of the main key factors, as well as the polymorphism of patatin-like phospholipase domain containing 3 (PNPLA3 gene) for NAFLD and the apolipoproteins and the peroxisome proliferator-activated receptor (PPAR) family for the cardiovascular damage. Beyond genetic influence, also epigenetics modifications are responsible for various clinical manifestations of both hepatic and CV disease. Interestingly, data are accumulating on the interplay between diet and genetic and epigenetic modifications, modulating pathogenetic pathways in NAFLD and CV disease. We report the main evidence from literature on the influence of both macro and micronutrients in NAFLD and CV damage and the role of genetics either alone or combined with diet in increasing the risk of developing both diseases. Understanding the interaction between metabolic alterations, genetics and diet are essential to treat the diseases and tailoring nutritional therapy to control NAFLD and CV risk.
Despite vaccination programs, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remains a public health problem. Identifying key prognostic determinants of severity of the disease may help better focus health resources. The negative prognostic role for metabolic and hepatic alterations is established; however, the interplay among different metabolic comorbidities and their interconnections with the liver have never been explored.The objective of this study is to evaluate the impact of liver alterations in addition to metabolic comorbidities as a predictor of SARS-CoV-2 severity. 382 SARS-CoV-2 patients were enrolled. Severe SARS-CoV-2 was diagnosed according to international consensus. Transaminases > 2 times the upper limit of normality (2ULN), hepatic steatosis (by ultrasound and/or computed tomography in 133 patients), and FIB-4 defined liver alterations. All data were collected on admission. The results are severe SARS-CoV-2 infection in 156 (41%) patients (mean age 65 ± 17; 60%males). Prevalence of obesity was 25%; diabetes, 17%; hypertension, 44%; dyslipidaemia, 29%; with 13% of the cohort with ≥ 3 metabolic alterations. Seventy patients (18%) had transaminases > 2ULN, 82 (62%) steatosis; 199 (54%) had FIB-4 < 1.45 and 45 (12%) > 3.25. At multivariable analysis, ≥ 3 metabolic comorbidities (OR 4.1, CI 95% 1.8–9.1) and transaminases > 2ULN (OR 2.6, CI 95% 1.3–6.7) were independently associated with severe SARS-CoV-2. FIB-4 < 1.45 was a protective factor (OR 0.42, CI 95% 0.23–0.76). Hepatic steatosis had no impact on disease course. The presence of metabolic alterations is associated with severe SARS-CoV-2 infection, and the higher the number of coexisting comorbidities, the higher the risk of severe disease. Normal FIB-4 values are inversely associated with advanced SARS-CoV-2 regardless of metabolic comorbidities, speculating on use of these values to stratify the risk of severe infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.