The spherical p-spin model is a fundamental model in statistical mechanics of a disordered system with a random first-order transition. The dynamics of this model is interesting both for the physics of glasses and for its implications on hard optimization problems. Here, we revisit the out-of-equilibrium dynamics of the spherical mixed p-spin model, which differs from the pure p-spin model by the fact that the Hamiltonian is not a homogeneous function of its variables. We consider quenches (gradient descent dynamics) starting from initial conditions thermalized in the high-temperature ergodic phase. Unexpectedly, we find that, differently from the pure p-spin case, the asymptotic states of the dynamics keep memory of the initial condition. The final energy is a decreasing function of the initial temperature, and the system remains correlated with the initial state. This dependence disproves the idea of a unique "threshold" energy level attracting dynamics starting from high-temperature initial conditions. Thermalization, which could be achieved, e.g., by an algorithm like simulated annealing, provides an advantage in gradient descent dynamics and, last but not least, brings mean-field models closer to real glass phenomenology, where such a dependence is observed in numerical simulations. We investigate the nature of the asymptotic dynamics, finding an aging state that relaxes towards deep, marginally stable minima. However, careful analysis rules out simple generalizations of the aging solution of the pure model. We compute the constrained complexity with the aim of connecting the asymptotic solution to the energy landscape.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.