The purpose of this study is to investigate the dynamic response of axially translating continua undergoing both the effect of friction and axial acceleration. The axially moving continuum is initially modeled as a string, neglecting its flexural stiffness; the response, with particular interest given to transverse vibrations and dynamic stability, is studied through numerical methods. A finite element method is employed to discretize the space domain and an implicit α–method is employed to integrate the resulting matrix equation in the time domain. Results are given through time history diagrams and stability considerations.
The dynamic response of an axially translating continuum subjected to the combined effects of a pair of spring supported frictional guides and axial acceleration is investigated; such systems are both non-conservative and gyroscopic. The continuum is modeled as a tensioned string translating between two rigid supports with a time dependent velocity profile. The equations of motion are derived with the extended Hamilton’s principle and discretized in the space domain with the finite element method. The stability of the system is analyzed with the Floquet theory for cases where the transport velocity is a periodic function of time. Direct time integration using an adaptive step Runge-Kutta algorithm is used to verify the results of the Floquet theory. Results are given in the form of time history diagrams and instability point grids for different sets of parameters such as the location of the stationary load, the stiffness of the elastic support, and the values of initial tension. This work showed that presence of friction adversely affects stability, but using non-zero spring stiffness on the guiding force has a stabilizing effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.