A glycoprotein that exhibits alkaline phosphatase activity and binds Ca2+ with high affinity has been extracted and purified from cartilage matrix vesicles by fast protein liquid chromatography. Antibodies against this glycoprotein were used to analyze its distribution in chondrocytes and in the matrix of calcifying cartilage. Under the light microscope, using immunoperoxidase or immunofluorescence techniques, the glycoprotein is localized in chondrocytes of the resting zone. At this level, the extracellular matrix does not show any reaction. In the cartilage plate, between the proliferating and the hypertrophic region, a weak immune reactivity is seen in the cytoplasm, whereas in the intercolumnar matrix the collagen fibers appear clearly stained. Stained granular structures, distributed with a pattern similar to that of matrix vesicles, are also visible. Calcified matrix is the most stained area. These results were confirmed under the electron microscope using both immunoperoxidase and protein A-gold techniques. In parallel studies, enzyme activity was also analyzed by histochemical methods. Whereas resting cartilage, the intercellular matrix of the resting zone, and calcified matrix do not exhibit any enzyme activity, the zones of maturing and hypertrophic chondrocytes are highly reactive. Some weak reactivity is also shown by chondrocytes of the resting zone. The observation that this glycoprotein (which binds Ca2+ and has alkaline phosphatase activity) is synthesized in chondrocytes and is exported to the extracellular matrix at the time when calcification begins, suggests that it plays a specific role in the process of calcification.
Bilirubin and phthalein dyes are taken up by the liver via a carrier-mediated mechanism operated at least in part by bilitranslocase (BTL). Because they also undergo renal transport, the presence and function of BTL was investigated in rat renal tubular plasma membrane vesicles. Transport of sulfobromophthalein (BSP) was enriched in basolateral domain of plasma membrane and followed the distribution pattern of Na(+)-K(+)-ATPase but not of gamma-glutamyltransferase. BSP uptake was inhibited by addition of monospecific antibodies raised against hepatic BTL. As in liver vesicles, BSP transport was electrogenic, being greatly accelerated by addition of valinomycin in presence of an inwardly directed K+ gradient. Apparent Km of BSP transport was 17 +/- 2 microM (n = 3 expts), one order of magnitude higher than that measured in liver; however, Vmax was similar to that described in liver vesicles (429 +/- 18 nmol BSP.mg protein-1.min-1, n = 3 expts). Competitive inhibition was observed with both unconjugated bilirubin (Ki, 2.9 +/- 0.2 microM) and rifamycin SV (Ki, 76 +/- 10 microM), known competitors for hepatic BTL-mediated transport of BSP. Immunoblotting studies with anti-BTL monospecific antibodies revealed presence of a single positive band only in basolateral-enriched membrane fraction; its apparent molecular mass was 37 kDa, virtually identical to that of hepatic protein. Immunohistochemistry confined presence of BTL to renal proximal tubules (RPT) We conclude that BTL is present in basolateral plasma membrane of RPT cells. Lower affinity of renal, compared with hepatic protein, for substrates might explain the marginal role of kidney in plasma clearance of bilirubin and cholephilic dyes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.