Multi-objective evolutionary algorithms (MOEAs) have been efficiently applied to Search-Based Software Engineering (SBSE) problems. However, skilled software engineers waste significant effort designing such algorithms for a particular problem, adapting them, selecting operators and configuring parameters. Hyper-heuristics can help in these tasks by dynamically selecting or creating heuristics. Despite of such advantages, we observe a lack of works regarding this subject in the SBSE field. Considering this fact, this work introduces HITO, a Hyper-heuristic for the Integration and Test Order Problem. It includes a set of well-defined steps and is based on two selection functions (Choice Function and Multi-armed Bandit) to select the best low-level heuristic (combination of mutation and crossover operators) in each mating. To perform the selection, a quality measure is proposed to assess the performance of low-level heuristics throughout the evolutionary process. HITO was implemented using NSGA-II and evaluated to solve the integration and test order problem in seven systems. The introduced hyper-heuristic obtained the best results for all systems, when compared to a traditional algorithm.
The field of Search-Based Software Engineering (SBSE) has widely utilized Multi-Objective Evolutionary Algorithms (MOEAs) to solve complex software engineering problems. However, the use of such algorithms can be a hard task for the software engineer, mainly due to the significant range of parameter and algorithm choices. To help in this task, the use of Hyper-heuristics is recommended. Hyper-heuristics can select or generate low-level heuristics while optimization algorithms are executed, and thus can be generically applied. Despite their benefits, we find only a few works using hyper-heuristics in the SBSE field. Considering this fact, we describe HITO, a Hyper-heuristic for the Integration and Test Order problem, to adaptively select search operators while MOEAs are executed using one of the selection methods: Choice Function and Multi-Armed Bandit. The experimental results show that HITO can outperform the traditional MOEAs NSGA-II and MOEA/DD. HITO is also a generic algorithm, since the user does not need to select crossover and mutation operators, nor adjust their parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.