Here we introduce the Computational Recognition of Secondary Structure (CROSS) method to calculate the structural profile of an RNA sequence (single- or double-stranded state) at single-nucleotide resolution and without sequence length restrictions. We trained CROSS using data from high-throughput experiments such as Selective 2΄-Hydroxyl Acylation analyzed by Primer Extension (SHAPE; Mouse and HIV transcriptomes) and Parallel Analysis of RNA Structure (PARS; Human and Yeast transcriptomes) as well as high-quality NMR/X-ray structures (PDB database). The algorithm uses primary structure information alone to predict experimental structural profiles with >80% accuracy, showing high performances on large RNAs such as Xist (17 900 nucleotides; Area Under the ROC Curve AUC of 0.75 on dimethyl sulfate (DMS) experiments). We integrated CROSS in thermodynamics-based methods to predict secondary structure and observed an increase in their predictive power by up to 30%.
HOTAIR is a lncRNA overexpressed in several epithelial cancers and strongly correlated with invasion. This lncRNA was proven a pivotal element of the epithelial-to-mesenchymal transition (EMT), a transdifferentiation process triggering metastasis. Snail, master inducer of EMT, requires HOTAIR to recruit EZH2 on specific epithelial target genes (i.e., HNF4a, E-cadherin, and HNF1a) and cause their repression. Here, we designed a HOTAIR deletion mutant form, named HOTAIR-sbid, including the putative Snailbinding domain but depleted of the EZH2-binding domain. HOTAIR-sbid acted as a dominant negative of the endogenous HOTAIR. In both murine and human tumor cells, HOTAIR-sbid impaired the ability of HOTAIR to bind Snail and, in turn, trigger H3K27me3/EZH2-mediated repression of Snail epithelial target genes. Notably, HOTAIR-sbid expression was proven to reduce cellular motility, invasiveness, anchorage-independent growth, and responsiveness to TGFb-induced EMT. These data provide evidence on a lncRNA-based strategy to effectively impair the function of a master EMT-transcriptional factor.Significance: This study defines an innovative RNA-based strategy to interfere with a pivotal function of the tumorrelated lncRNA HOTAIR, comprising a dominant negative mutant that was computationally designed and that impairs epithelial-to-mesenchymal transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.