In recent decades, tissue engineering strategies have been proposed for the treatment of musculoskeletal diseases and bone fractures to overcome the limitations of the traditional surgical approaches based on allografts and autografts. In this work we report the development of a composite porous poly(dl-lactide-co-glycolide) scaffold suitable for bone regeneration. Scaffolds were produced by thermal sintering of porous microparticles. Next, in order to improve cell adhesion to the scaffold and subsequent proliferation, the scaffolds were coated with the osteoconductive biopolymers chitosan and sodium alginate, in a process that exploited electrostatic interactions between the positively charged biopolymers and the negatively charged PLGA scaffold. The resulting scaffolds were characterized in terms of porosity, degradation rate, mechanical properties, biocompatibility and suitability for bone regeneration. They were found to have an overall porosity of ∼85% and a degradation half time of ∼2 weeks, considered suitable to support de novo bone matrix deposition from mesenchymal stem cells. Histology confirmed the ability of the scaffold to sustain adipose-derived mesenchymal stem cell adhesion, infiltration, proliferation and osteo-differentiation. Histological staining of calcium and microanalysis confirmed the presence of calcium phosphate in the scaffold sections.
BackgroundPatellofemoral joint replacement is a successful treatment option for isolated patellofemoral osteoarthritis. However, results of later conversion to total knee replacement may be compromised by periprosthetic bone loss. Previous clinical studies have demonstrated a decrease in distal femoral bone mineral density after patellofemoral joint replacement. It is unclear whether this is due to periprosthetic stress shielding. The main objective of the current study was to evaluate the stress shielding effect of prosthetic replacement with 2 different patellofemoral prosthetic designs and with a total knee prosthesis.MethodsWe developed a finite element model of an intact patellofemoral joint, and finite element models of patellofemoral joint replacement with a Journey PFJ prosthesis, a Richards II prosthesis, and a Genesis II total knee prosthesis. For each of these 4 finite element models, the average Von Mises stress in 2 clinically relevant regions of interest were evaluated during a simulated squatting movement until 120 degrees of flexion.ResultsDuring deep knee flexion, in the anterior region of interest, the average Von Mises stress with the Journey PFJ design was comparable to the physiological knee, while reduced by almost 25% for both the Richards II design and the Genesis II total knee joint replacement design. The average Von Mises stress in the supracondylar region of interest was similar for both patellofemoral prosthetic designs and the physiological model, with slightly lower stress for the Genesis II design.ConclusionsPatellofemoral joint replacement results in periprosthetic stress-shielding, although to a smaller degree than in total knee replacement. Specific patellofemoral prosthetic design properties may result in differences in femoral stress shielding.
The purpose of the study was to evaluate whether using only the semitendinosus as a tripled short graft would affect the electromechanical delay (EMD) of the knee flexors. EMD was evaluated in volunteers (N = 15) after they had undergone surgery for anterior cruciate ligament (ACL) reconstruction where the semitendinosus tendon alone was used as a graft. The results were compared with the intact leg and healthy controls (N = 15). After warming up, each subject performed four maximally explosive isometric contractions on an isokinetic dynamometer. Torques were measured by the dynamometer, while the electrical activity of the semitendinosus and biceps femoris muscles was detected using surface electromyography. EMD was found to be significantly increased (p = 0.001) in patients who had undergone ACL reconstruction compared to the controls. On the contrary, no significant differences (p = 0.235) were found for the biceps femoris muscle between the two groups. Similar results were found when the study group was compared with the intact leg group (p = 0.027 for semitendinosus and p = 0.859 for biceps femoris). Harvesting the semitendinosus tendon increases the EMD for the semitendinosus muscle but does not influence the EMD outcomes for the biceps femoris muscle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.