Six months of stratospheric aerosol observations with the European Aerosol Research Lidar Network (EAR-LINET)
Abstract. Sun-sky radiometers are instruments created for aerosol study, but they can measure in the water vapour absorption band allowing the estimation of columnar water vapour in clear sky simultaneously with aerosol characteristics, with high temporal resolution. A new methodology is presented for estimating calibration parameters (i.e. characteristic parameters of the atmospheric transmittance and solar calibration constant) directly from the sun-sky radiometer measurements. The methodology is based on the hypothesis that characteristic parameters of the atmospheric transmittance are dependent on vertical profiles of pressure, temperature and moisture occurring at each site of measurement. To obtain the parameters from the proposed methodology some seasonal independent measurements of columnar water vapour taken over a large range of solar zenith angle simultaneously with the sun-sky radiometer measurements, are needed. In this work high time resolution columnar water vapour measurements by GPS were used as independent data set, but also the case when such measurements are not available was considered by developing the surface humidity method (SHM). This methodology makes it possible to retrieve the needed independent data set of columnar water vapour using the standard surface meteorological observations (temperature, pressure and relative humidity) more readily available. The time pattern of columnar water vapour from sun-sky radiometer retrieved using both the methodologies was compared with simultaneous measurements from microwave radiometer, radiosondings and GPS. Water vapour from sun-sky radiometer, obtained using GPS independent measurements, was characterized by an error varying from 1 % up to 5 %, whereas water vapour from SHM showed an error from 1 % up to 11 %, depending on the local columnar water occurring at the site during the year. These errors were estimated by comparing water vapour series from sun-sky radiometer against measurements taken by GPS at a nearby station. The accordance between retrievals from sun-sky radiometer and simultaneous measurements from the other instruments was found always within the error both in the case of SHM and of the GPS independent data set.Water vapour obtained using characteristic parameters of the atmospheric transmittance dependent on water vapour was also compared against GPS retrievals, showing a clear improvement with respect to the case when these parameters are kept fixed.
The diurnal cycle of clouds over the western equatorial Pacific region (15ЊS-15ЊN, 130ЊE-180Њ) is studied analyzing hourly GMS-4 infrared brightness temperature images during the intensive observation period (Nov 1992-Feb 1993) of TOGA COARE. Although the area studied is essentially (93%) oceanic, differences of diurnal behavior of the clouds are noticed over different ocean subareas, depending both on the general circulation conditions and on the vicinity of landmasses. This study focuses on the effects of New Guinea and other major islands on the diurnal cycle within the surrounding ocean areas, as for example, the TOGA COARE Intensive Flux Array. The major observable feature of the influence of land is the presence of a diurnal, rather than semidiurnal, average cycle of cloudiness with a high day-today repetitivity. The signal is observed up to 600 km off the coast of New Guinea and it is characterized by a variable phase propagating at an average speed of about 15 m s Ϫ1. For smaller islands, the effect extends over a distance approximately comparable to their size. The genesis of the propagating cloud systems is assumed as due to the low-level convergence between the largescale flow and a possible land breeze. This conceptual model has been previously proposed to explain a similar signal observed offshore of Borneo. Within this framework, the influence of the large-scale circulation on the intensity and spatial organization of the propagating cloud systems is discussed. The diurnal signal vanishes when the expected convergence is weaker or when overshadowed by large-scale disturbances crossing over the considered area. In the first 3 months of the period such disturbances are nearly always cloud clusters accompanying the active phase of the Madden-Julian oscillation. Finally it is shown that the small islands in the TOGA COARE domain can corrupt the ''oceanic'' signal by as much as 10% of the diurnal cycle.
Results are presented from the Actinic Flux Determination from Measurements of Irradiance (ADMIRA) campaign to measure spectral global UV irradiance and actinic flux at the ground, beneath an atmosphere well defined by supporting measurements. Actinic flux is required to calculate photolysis rates for atmospheric chemistry, yet most spectral UV measurements are of irradiance. This work represents the first part of a project to provide algorithms for converting irradiances to actinic fluxes with specified uncertainties. The campaign took place in northern Greece in August 2000 and provided an intercomparison of UV spectroradiometers measuring different radiation parameters, as well as a comprehensive radiation and atmospheric dataset. The independently calibrated spectroradiometers measuring irradiance and actinic flux agreed to within 5%, while measurements of spectral direct irradiance differed by 9%. Relative agreement for all parameters proved to be very stable during the campaign. A polarization problem in the Brewer spectrophotometer was identified as a problem in making radiance distribution measurements with this instrument. At UV wavelengths actinic fluxes F were always greater than the corresponding irradiance E by a factor between 1.4 and 2.6. The value of the ratio F : E depended on wavelength, solar zenith angle, and the optical properties of the atmosphere. Both the wavelength and solar zenith angle dependency of the ratio decreased when the scattering in the atmosphere increased and the direct beam proportion of global irradiance decreased, as expected. Two contrasting days, one clear and one with higher aerosol and some cloud, are compared to illustrate behavior of the F : E ratio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.