The production of natural toxins is an interesting aspect, which characterizes the physiology and the ecology of a number of marine species that use them for defence/offence purposes. Cnidarians are of particular concern from this point of view; their venoms are contained in specialized structures–the nematocysts–which, after mechanical or chemical stimulation, inject the venom in the prey or in the attacker. Cnidarian stinging is a serious health problem for humans in the zones where extremely venomous jellyfish or anemones are common, such as in temperate and tropical oceanic waters and particularly along several Pacific coasts, and severe cases of envenomation, including also lethal cases mainly induced by cubomedusae, were reported. On the contrary, in the Mediterranean region the problem of jellyfish stings is quite modest, even though they can have anyhow an impact on public health and be of importance from the ecological and economic point of view owing to the implications on ecosystems and on some human activities such as tourism, bathing and fishing. This paper reviews the knowledge about the various aspects related to the occurrence and the stinging of the Mediterranean scyphozoan jellyfish as well as the activity of their venoms.
Culturable vibrios were isolated from water and plankton fractions collected during an 18-month sampling study performed along the north-central coast of the Adriatic Sea (Italy). Unculturable Vibrio vulnificus and V. parahaemolyticus were detected in plankton fractions by polymerase chain reaction amplification of DNA sequences for cytotoxin-haemolysin and thermolabile haemolysin respectively. The presence of V. parahaemolyticus, V. vulnificus and V. cholerae virulence genes and the expression of pathogenicity-associated traits were analysed in all isolates. The results showed the spreading of these properties among the environmental isolates and confirm the need of both monitoring the presence of vibrios in coastal areas and studying their pathogenicity potential in order to properly protect human health.
The toxicity of Cnidaria is a subject of concern for its influence on human activities and public health. During the last decades, the mechanisms of cell injury caused by cnidarian venoms have been studied utilizing extracts from several Cnidaria that have been tested in order to evaluate some fundamental parameters, such as the activity on cell survival, functioning and metabolism, and to improve the knowledge about the mechanisms of action of these compounds. In agreement with the modern tendency aimed to avoid the utilization of living animals in the experiments and to substitute them with in vitro systems, established cell lines or primary cultures have been employed to test cnidarian extracts or derivatives. Several cnidarian venoms have been found to have cytotoxic properties and have been also shown to cause hemolytic effects. Some studied substances have been shown to affect tumour cells and microorganisms, so making cnidarian extracts particularly interesting for their possible therapeutic employment. The review aims to emphasize the up-to-date knowledge about this subject taking in consideration the importance of such venoms in human pathology, the health implications and the possible therapeutic application of these natural compounds.
Global reports estimate 600 million betel quid (BQ) chewers. BQ chewing has been demonstrated not only to be a risk factor for cancers of the oral cavity and pharynx and oral potentially malignant disorders (OPMD) but also to cause other cancers and adverse health effects. Herein, we summarized the international comparison data to aid in the understanding of the close relationship between the prevalence of BQ chewing, the occurrence of oral and pharyngeal cancers, and adverse health effects. Potential biomarkers of BQ carcinogens, such as areca nut, alkaloids, and 3-methylnitrosaminopropionitrile (MNPN), are closely associated with human health toxicology. Molecular mechanisms or pathways involving autophagy, hypoxia, COX-2, NF-κB activity, and stemness are known to be induced by BQ ingredients and are very closely related to the carcinogenesis of cancers of oral and pharynx. BQ abuse-related monoamine oxidase (MAO) gene was associated with the occurrence and progress of oral and pharyngeal cancers. In summary, our review article provides important insights into the potential roles of environmental BQ (specific alkaloid biomarkers and nitrosamine products MNPN) and genetic factors (MAO) and offers a basis for studies aiming to reduce or eliminate BQ-related OPMD and oral/pharyngeal cancer incidences in the future.
Abstract:The toxicity of Cnidaria is a subject of concern due to its influence on humans. In particular, jellyfish blooms can highly affect human economical activities, such as bathing, fishery, tourism, etc., as well as the public health. Stinging structures of Cnidaria (nematocysts) produce remarkable effects on human skin, such as erythema, swelling, burning and vesicles, and at times further severe dermonecrotic, cardio-and neurotoxic effects, which are particularly dangerous in sensitive subjects. In several zones the toxicity of jellyfish is a very important health problem, thus it has stimulated the research on these organisms; to date toxicological research on Cnidarian venoms in the Mediterranean region is not well developed due to the weak poisonousness of venoms of jellyfish and anemones living in this area. In spite of this, during last decades several problems were also caused in the Mediterranean by stinging consequent to Cnidarian blooms mainly caused by Pelagia noctiluca (Forsskål, 1775) which is known to be the most venomous Mediterranean jellyfish. This paper reviews the knowledge on this jellyfish species, particularly considering its occurrence and toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.