The anti-inflammatory agents glucocorticoids (GC) are the only available treatment for Duchenne muscular dystrophy (DMD). However, long-term GC treatment causes muscle atrophy and wasting. Thus, targeting specific mediator of inflammatory response may be more specific, more efficacious, and with fewer side effects. The pro-inflammatory cytokine interleukin (IL) 6 is overproduced in patients with DMD and in the muscle of mdx, the animal model for human DMD. We tested the ability of inhibition of IL6 activity, using an interleukin-6 receptor (Il6r) neutralizing antibody, to ameliorate the dystrophic phenotype. Blockade of endogenous Il6r conferred on dystrophic muscle resistance to degeneration and alleviated both morphological and functional consequences of the primary genetic defect. Pharmacological inhibition of IL6 activity leaded to changes in the dystrophic muscle environment, favoring anti-inflammatory responses and improvement in muscle repair. This resulted in a functional homeostatic maintenance of dystrophic muscle.These data provide an alternative pharmacological strategy for treatment of DMD and circumvent the major problems associated with conventional therapy.
Objectives Mutations affecting the TMEM173 gene cause STING-associated vasculopathy with onset in infancy (SAVI). No standard immunosuppressive treatment approach is able to control disease progression in patients with SAVI. We studied the efficacy and safety of targeting type I IFN signaling with the Janus kinase inhibitor, ruxolitinib. Methods We used DNA sequencing to identify mutations in TMEM173 in patients with peripheral blood type I IFN signature. The JAK1/2 inhibitor ruxolitinib was administered on an off-label basis. Results We identified three patients with SAVI presenting with skin involvement and progressive severe interstitial lung disease. Indirect echocardiographic signs of pulmonary hypertension were present in one case. Following treatment with ruxolitinib, we observed improvements of respiratory function including increased forced vital capacity in two patients, with discontinuation of oxygen therapy and resolution of echocardiographic abnormalities in one case. Efficacy was persistent in one patient and only transitory in the other two patients. Clinical control of skin complications was obtained, and one patient discontinued steroid Stefano Volpi and Antonella Insalaco contributed equally.Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10875-019-00645-0) contains supplementary material, which is available to authorized users. treatment. One patient, who presented with kidney involvement, showed resolution of hematuria. One patient experienced increased recurrence of severe viral respiratory infections. Monitoring of peripheral blood type I interferon signature during ruxolitinib treatment did not show a stable decrease. Conclusions We conclude that targeting type I IFN receptor signaling may represent a promising therapeutic option for a subset of patients with SAVI syndrome and severe lung involvement. However, the occurrence of viral respiratory infection might represent an important cautionary note for the application of such form of treatment.
Objective. To evaluate the expression of type I interferon (IFNα/β)-and type II IFN (IFNγ)-inducible genes in muscle biopsy specimens from patients with juvenile dermatomyositis (DM) and to correlate their expression levels with histologic and clinical features.Methods. Expression levels of IFN-inducible genes and proinflammatory cytokines were assessed by quantitative polymerase chain reaction in muscle biopsy specimens from patients with juvenile DM (n = 39), patients with Duchenne's muscular dystrophy (DMD), and healthy controls. Muscle biopsy sections were stained and scored for severity of histopathologic features. The charts of patients with juvenile DM were reviewed for clinical features at the time of sampling and long-term outcomes.Results. Muscle expression levels of IFNα/β-inducible genes (type I IFN score), IFNγ, IFNγ-inducible genes (type II IFN score), and tumor necrosis factor (TNF) were significantly higher in juvenile DM patients not receiving glucocorticoid therapy before muscle biopsy (n = 27) compared to DMD patients (n = 24) (type I IFN score, P < 0.0001; type II IFN score, P < 0.001; TNF, P < 0.05) and healthy controls (n = 4) (type I IFN score, P < 0.01; type II IFN score, P < 0.01; TNF, P < 0.05). Immunofluorescence staining of muscle biopsy sections from untreated juvenile DM patients showed increased immunoreactivity for IFNγ and HLA class II molecules compared to controls. Type I and type II IFN scores were correlated with typical histopathologic features of juvenile DM muscle biopsy samples, such as infiltration of endomysial CD3+ cells (type I IFN score, r = 0.68; type II IFN score, r = 0.63), perimysial CD3+ cells (type I IFN score, r = 0.59; type II IFN score, r = 0.66), CD68+ cells (type II IFN score, r = 0.46), and perifascicular atrophy (type I IFN score, r = 0.61; type II IFN score, r = 0.77). Juvenile DM patients with a high type I IFN score, a high type II IFN score, and high TNF expression levels showed more severe disease activity at biopsy (P < 0.05). In addition, juvenile DM patients with a high type II IFN score at biopsy reached clinically inactive disease significantly later than patients with low type II IFN score (log rank chi-square value 13.53, P < 0.001).Conclusion. The increased expression of IFN-inducible genes in the muscle in juvenile DM patients and their association with histologic and clinical features further support a pathogenic role for both type I and type II IFNs in juvenile DM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.