The chimeric anti-CD20 MAb rituximab has recently become a treatment of choice for low-grade or follicular non-Hodgkin's lymphomas (FL) with a response rate of about 50%. In this report, we have investigated the mechanism of action of rituximab on 4 FL and 1 Burkitt's lymphoma (BL) cell lines, 3 fresh FL samples and normal B cells in vitro. Rituximab efficiently blocks the proliferation of normal B cells, but not that of the lymphoma lines. We did not detect significant apoptosis of the cell lines in response to rituximab alone. All cell lines were targets of antibody-dependent cellular cytotoxicity (ADCC). On the other hand, human complement-mediated lysis was highly variable between cell lines, ranging from 100% lysis to complete resistance. Investigation of the role of the complement inhibitors CD35, CD46, CD55, and CD59 showed that CD55, and to a lesser extent CD59, are important regulators of complement-mediated cytotoxicity (CDC) in FL cell lines as well as in fresh cases of FL: Blocking CD55 and/or CD59 function with specific antibodies significantly increased CDC in FL cells. We conclude that CDC and ADCC are major mechanisms of action of rituximab on B-cell lymphomas and that a heterogeneous susceptibility of different lymphoma cells to complement may be at least in part responsible for the heterogeneity of the response of different patients to rituximab in vivo. Furthermore, we suggest that the relative levels of CD55 and CD59 may become useful markers to predict the clinical response.
Summary. Leucocyte alkaline phosphatase (LAP) is an enzyme expressed on the external aspect of the neutrophilic granulocyte plasma membrane, and represents a specific marker for the fully differentiated granulocyte. In this report we characterize 1B12.1, a monoclonal antibody raised against human bone alkaline phosphatase, by its ability to recognize the LAP protein. As assessed by Western blot analysis, following electrophoresis under non-reducing conditions, the antibody specifically reacts with LAP upon forced expression of the protein in simian COS-7 fibroblasts. In addition, the 1B12.1 antibody recognizes partially purified LAP isolated from peripheral blood granulocytes. With this antibody we developed a quantitative flowcytometry-based method for the determination of LAP. Double fluorescence flow cytometry demonstrated that the LAP protein was present in relatively high amounts in neutrophilic granulocytes, but not in monocytes, natural killer cells, or B and T lymphocytes of normal individuals. The protein was completely absent in granulocytes obtained from chronic myeloid leukaemia and paroxysmal nocturnal haemoglobinuria patients. Higher than normal levels of LAP protein were evident in neutrophilic granulocytes of patients suffering from polycythaemia vera, essential thrombocythaemia and severe aplastic anaemia. However, the highest amounts of LAP protein were present in the granulocytes of normal individuals treated with G-CSF for the isolation of peripheral blood stem cells.
Background Immunotherapy using patient-derived CAR T cells has achieved complete remission and durable response in highly refractory populations. However, logistical complexity and high costs of manufacturing autologous viral products limit CAR T cell availability. Allogeneic Cytokine Induced Killer (CIK) cells, a T-cell population characterized by the enrichment of CD3+CD56+ cells, have demonstrated a high profile of safety in acute lymphoblastic leukemia (ALL) patients (Introna M et al. Biol Blood Marrow Transplant. 2017). CIK cells could be easily engineered by the non-viral Sleeping Beauty (SB) transposon for the clinical application (Magnani CF et al, Hum Gene Ther. 2018, Biondi A et al. J Autoimmun. 2017). Methods CIK cells were generated from 50 ml of donor-derived peripheral blood (PB) by electroporation with the GMP-grade CD19.CAR/pTMNDU3 and pCMV-SB11 plasmids according to the method enclosed in the filed patent EP20140192371. After lymphodepletion with Fludarabine (30 mg/m2/day) x 4 days and Cyclophosphamide (300 mg/m2/day) x 2 days, CARCIK-CD19 were infused in pediatric and adult B-cell ALL (B-ALL) patients relapsed after allogeneic hematopoietic stem cell transplantation (HSCT). The clinical trial follows a four-dose escalation scheme (1x106, 3x106, 7.5x106 and 15x106 transduced CAR+ T cells/kg) using the novel Bayesian Optimal Interval Design (BOIN). During the cell manufacturing period, bridging anti leukemic therapy from patient registration to the beginning of the lymphodepletion, was allowed. The primary endpoint was to define the Maximum Tolerated Dose (MTD) and a safety assessment. Key secondary endpoints included the assessment of complete hematologic response (CR), defined as < 5% bone marrow (BM) blasts, circulating blasts < 1%, no clinical evidence of extramedullary disease, as well as the characterization of CARCIK-CD19 persistence in PB and BM (NCT03389035). Results We manufactured eighteen batches by seeding a median of 126.8x106 allogeneicPBMCs. At the end of expansion, the mean harvesting was 6.46x109 nucleated cells (range 1.39 - 16.00x109). Manufactured cells were mostly CD3+ lymphocytes (mean 98.90% ±SE 0.30%). Of these, 43.57%±3.73% were CAR+, 47.07%±2.74% were CD56+, 80.44%±2.53% were CD8+. The quality requirements for batch release were met in 17 productions. As of the data cut-off date (July 19, 2019), 4 pediatric and 7 adult patients were infused with a single dose of CARCIK-CD19 (n=2 HLA identical sibling, n=4 MUD, n=5 haploidentical donor). The leukemic burden in the BM post lymphodepletion/pre-infusion ranged from 0% to 96%. CARCIK-CD19 were characterized by a high profile of safety in all treated patients. Toxicities reported were a grade I cytokine release syndrome and an infusion-related DMSO-associated seizure, with absence of dose-limiting toxicities, neurotoxicity and graft-versus-host disease (GvHD) in any of the treated patients. Four out of 5 patients, receiving the highest doses, achieved CR and CRi at day 28. The 3 patients in CR were also MRD- (by flow cytometry and RT-PCR) while the CRi was MRD+ and relapsed at day+49. Robust expansion was achieved in the majority of the patients as defined by detectable CAR T-cell detection (vector copy number VCN, range 4645-977992 transgene copies/ug) and flow (range 0.5-30%) in PB. The median time to peak engraftment was 14 days. The magnitude of expansion was correlated with the CD19+ burden in the BM at the time of the infusion (P value = 0.0006, R square 0.7469). CD8+ T cells represented the predominant CARCIK-CD19 T-cell subset (78.88%±5.33% d14 n=6) along with CD3+CD56+ CIK cells and CD4+ T cells to a lesser extent. The majority of CAR T cells had a central and effector memory phenotype. CAR T cells were measurable by VCN up to 6 months with a mean persistence of 70.5 ± 14.85 days (follow up ranging from 28 days to 1 year). No major difference was observed by integration analyses of the patients' PB and the cell products. The vector integration sites reflected the classical random distribution of SB without any tendency for gene dense regions. Conclusions Our ongoing phase I/II trial demonstrates that SB-engineered CARCIK-CD19 cells are able to expand and persist in pediatric and adult B-ALL patients relapsed after HSCT, with important implications for a non-viral technology. These encouraging results prompted us to expand our study. Disclosures Gritti: Autolus Ltd: Honoraria; Roche: Other: Not stated; Abbvie: Other: Not stated; Becton Dickinson: Other: Not stated. Rambaldi:Celgene: Membership on an entity's Board of Directors or advisory committees, Other: travel support, Speakers Bureau; Roche: Membership on an entity's Board of Directors or advisory committees, Other: travel support, Research Funding, Speakers Bureau; Jazz: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau, travel support; Pfizer: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Gilead: Membership on an entity's Board of Directors or advisory committees, Other: travel support, Speakers Bureau; Amgen: Membership on an entity's Board of Directors or advisory committees, Other: travel support, Research Funding, Speakers Bureau; Novartis: Membership on an entity's Board of Directors or advisory committees, Other: travel support, Speakers Bureau; Italfarmaco: Membership on an entity's Board of Directors or advisory committees, Other: travel support, Research Funding, Speakers Bureau; Omeros: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.