The ability of two municipal solid waste composts (MSW-Cs) to sorb antimony(V) in acidic conditions (pH 4.5) was investigated. Sorption isotherms and kinetics showed that both MSW-Cs could sorb antimony(V), even if in different amounts (~ 0.18 and 0.24 mmol g of Sb(V) by MSW-C1 and MSW-C2, respectively). These differences were ascribed to the chemical composition of composts, as well as to the total acidity of their humic substances. The Sb(V) sorption by both MSW-Cs followed a pseudo-second-order kinetic model, while the sorption isotherms data fitted the Freundlich model better than the Langmuir one. The humic acids extracted from composts contributed to 4.26 and 8.24% of Sb(V) sorption by MSW-C1 and MSW-C2 respectively. SEM-EDX spectra of the MSW-C+Sb(V) systems showed a certain association of Ca(II) with Sb(V), while sequential extraction procedures indicated that more than 80% of the Sb(V) sorbed was strongly retained by MSW-Cs. On the other hand, treatment with oxalic acid at pH 4.5 favored the release of more than 98 and 65% of the Sb(V) sorbed by MSW-C1 and MSW-C2 respectively, supporting a possible role of calcium in Sb(V) retention. The results from this study suggest that MSW-Cs could be used as amendments for the in-situ immobilization of Sb(V) in acidic-polluted soils.
In this study, the effectiveness of softwood-derived biochar (BC) in the retention of potentially toxic elements (PTE, i.e., Cu(II), Pb(II), As(V), and Sb(V)) was evaluated at different pH values (4.5, 6.0, and 7.0), along with its capacity to alleviate PTE phytotoxicity. At all pH values, sorption and kinetic isotherms followed the trend: Pb(II) (e.g., ~ 0.56 mmol g−1 at pH 6.0) > Cu(II) (e.g., ~ 0.33 mmol g−1 at pH 6.0) > As(V) (e.g., ~ 0.29 mmol g−1 at pH 6.0) > Sb(V) (e.g. ~ 0.24 mmol g−1 at pH 6.0). Kinetic data strongly correlated with the pseudo-second-order kinetic equation; Langmuir and Freundlich isotherm models suggested monolayer sorption of Cu(II), Pb(II), and As(V) onto the BC surface and the interaction of Sb(V) with BC sites characterized by distinct sorption energy (i.e., multilayer sorption). Scanning electron microscopy (SEM) with energy-dispersive X-ray (EDX) analysis of PTE-saturated BC showed that Pb(II) was mainly associated with O, Sb(V) with Ca and Fe, while Cu(II) and As(V) with Fe and O. This suggested that hydroxyl and carboxyl functional groups, amorphous Fe oxy-hydroxides, as well as PTE precipitation with BC components were likely responsible for BC sorption capacity. Treatment of PTE-saturated BC with Ca(NO3)2 and a range of environmentally relevant organic acids indicated that 6–11% of PTE were loosely bound and easily exchangeable, while up to 60% could be mobilized by the organic acids. Hydroponic plant-growth experiments using triticale plants showed that BC stimulated plant growth in the presence of PTE and reduced their phytotoxicity.
The effect of a municipal solid waste compost (MSWC), added at 1 and 2% rates, on the mobility, phytotoxicity, and bioavailability of antimony (Sb) was investigated in two soils (SA: acidic soil; SB: alkaline soil), spiked with two Sb concentrations (100 and 1000 mg kg−1). The impact of MSWC on microbial activity and biochemical functioning within the Sb-polluted soils was also considered. MSWC addition reduced water-soluble Sb and favored an increase in residual Sb (e.g., by 1.45- and 1.14-fold in SA-100 and SA-1000 treated with 2% MSWC, respectively). Significant increases in dehydrogenase activity were recorded in both the amended soils, as well as a clear positive effect of MSWC on the metabolic activity and catabolic diversity of respective microbial communities. MSWC alleviated Sb phytotoxicity in triticale plants and decreased Sb uptake by roots. However, increased Sb translocation from roots to shoots was recorded in the amended soils, according to the compost rate. Overall, the results obtained indicated that MSWC, particularly at a 2% rate, can be used for the recovery of Sb-polluted soils. It also emerged that using MSWC in combination with triticale plants can be an option for the remediation of Sb-polluted soils, by means of assisted phytoextraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.