Experimental partinstrument calibration Surface area analysisSingle point BET surface area determinations were undertaken with the use of a Mircomeritics FlowSorb II 2300 instrument, using a gas mixture of 29.1 vol% N 2 in He. The instrument measured the volume of nitrogen adsorbed or desorbed based on differential gas flow rates across the sample. Instrument calibration was undertaken by injection of 1 cm 3 N 2 gas into the machine, providing a differential flow rate equivalent to a desorption value of 2.84 m 2 at 298 K. Specific surface areas were calculated with a modified form of the BET equation recommended by the manufacturer, [17] using the measured nitrogen desorption value. The instrument calculated this value based on the volume of nitrogen desorbed by the sample on warming it from 77 K to room temperature. 2
The acid plant 'blow-down' (also called weak acid) produced at El Teniente mine in Chile was characterized. This liquid waste (tailing) is generated during the cooling and cleaning of the smelter gas prior to the production of sulfuric acid. The weak acid was composed of a liquid and a solid phase (suspended solids). The liquid phase of the sample analyzed in this study mainly contained Cu (562 mg L(-1)), SO4(2-) (32 800 mg L(-1)), Ca (1449 mg L(-1)), Fe (185 mg L(-1)), As (6 mg L(-1)), K (467 mg L(-1)) and Al (113 mg L(-1)). Additionally, the sample had a pH-value and total acidity of 0.45 and 2970 mg L(-1) as CaCO3, respectively. Hence, this waste was classified as extremely acidic and with a high metal content following the Ficklin diagram classification. Elemental analysis using atomic absorption, inductively coupled plasma, X-ray diffraction and electron microscopy showed that the suspended solids were anglesite (PbSO4) nano- and microparticles ranging from 50 nm to 500 nm in diameter.
<p>This study presents a significant advancement in the understanding of the uptake of Cu2+ by nanostructured calcium silicate (NCaSil) and to develop a strategy of using it in a continuous manner using packed columns. The NCaSil structure consists of micro-sized agglomeration of nanometre-sized platelets of calcium silicate. This arrangement grants the material a large surface area of 400 to 600 m2 g-1. The kinetics and thermodynamics of the adsorption of Cu2+ onto NCaSil in batch were studied at temperatures ranging from 277 to 333 K. The reaction between Cu2+ and NCaSil occurred rapidly, being endothermic and exhibiting an increase in the entropy meaning that the adsorption process became more spontaneous when the temperature was increased. Furthermore, the uptake resulted in the formation of copper sulfate hydroxide minerals in the form of Cu4(OH)6SO4·nH2O, where n is equal to 2 for wroewolfeite, 1 for posnjakite and 0 for brochantite. Using powder X-ray diffraction and scanning electron microscopy it was proven that at temperatures between 293 and 313 K wroewolfeite and posnjakite were intermediates in the formation of brochantite. Specifically at high temperatures of 333 K and Cu2+ concentrations higher than 15.7 mmol L-1 the reaction proceeded directly to the formation of the thermodynamically stable compound brochantite. A kinetic study of the crystal growth was carried out using powder-XRD which showed that the rate determining step towards the formation of brochantite is the nucleation of SO4 2-. Additionally, a value for the activation energy of 42 kJ mol-1 using powder-XRD data was obtained for the formation of the crystallographic plane 420 in the brochantite crystal. A sample of a real mining waste was collected and analysed. Based on this sample an emulated waste was generated. The NCaSil was tested for the uptake of Cu2+ ions from this emulated mining waste, showing that the use of NCaSil is feasible at pH values greater than 3. The production and use of NCaSil may be coupled to existing mining waste treatment processes in order to remove dissolved copper from solution and produce a copper rich solid as the by-product. NCaSil was packed inside a conventional axial flow column and a radial flow column, which was developed as part of this project. The former proved to be impractical due to a large pressure drop through the column, while the latter was impractical due to short operational times before breakthrough. Nonetheless, the radial flow column was operated by immersion in a tank exhibiting similar kinetics of copper ions uptake to those observed in batch processes. Therefore, the scale-up of this process was proposed including the necessary equations keeping the ratio of the tested radial flow column.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.