Renal cell carcinoma (RCC), a human kidney cancer from the proximal tubular epithelium, accounts for about 3% of adult malignancies. Molecular and cytogenetic analysis have highlighted deletions, translocations, or loss of heterozygosity in the 3p21-p26, a putative RCC locus, as well as in 6q, 8p, 9pq, and 14pq. Studies on phenotypic expression of human kidney tissue and on post-translational modifications in RCC have not yet provided a marker for early renal cell carcinoma diagnosis. Current diagnostic methods do not help to detect the tumor before advanced stages. We therefore used two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) to study normal and tumor kidney tissues in ten patients suffering from RCC. A human kidney protein map in the SWISS-2DPAGE database accessible through the ExPASy WWW Molecular Biology Server was established. Of 2789 separated polypeptides, 43 were identified by gel comparison, amino acid analysis, N-terminal sequencing, and/or immunodetection. The comparison between normal and tumor kidney tissues showed four polypeptides to be absent in RCC. One of them was identified as ubiquinol cytochrome c reductase (UQCR), whose locus has elsewhere been tentatively assigned to chromosome 19p12 or chromosome 22. A second polypeptide was identified as mitochondrial NADH-ubiquinone oxido-reductase complex I whose locus is located on chromosome 18p11.2 and chromosome 19q13.3. These result suggest that the lack of UQCR and of mitochondrial NADH-ubiquinone oxidoreductase complex I expression in RCC may be caused by unknown deletions, or by changes in gene transcription or translation. It might indicate that mitochondrial disfunction plays a major role in RCC genesis or evolution.
Heat shock protein 27 (HSP27, Swiss-Prot accession number P04792) is a component of the large and heterogeneous group of chaperone proteins, and its main functions are inhibition of apoptosis and prevention of aggregation of actin intermediate filament. Modified expression of HSP27 has been described in several cancers including testis, breast, and ovaric cancer. In the present work, 18 renal cell carcinoma (RCC) tissues and homologous normal kidney tissues have been investigated for HSP27 expression by combination of two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) separation and Western blotting immunodetection. The results showed significant differences either in expression and in HSP27 isoform numbers in RCC compared to normal kidney. The average number of isoforms was 21 in RCC and 15 in normal tissues with 4.5-5.9 pI range and 18-29 kDa M(r) range. The overexpression was also observed by immunohistochemistry on tissue sections. Only two of RCC samples showed less isoforms than homologous normal samples. Two isoforms were not detected using anti-Ser82 phosphorylated HSP27 antibody, neither in normal nor in RCC samples. Five of all the immunodetected isoforms were confirmed by mass spectrometry as HSP27, but no evidence of post-translational modifications was pointed out. The numerous isoforms observed in RCC are not consistent with data reported in the literature so far, and they might be due to different post-translational modifications such as phosphorylation and S-thiolation. Since activation of HSP27 seems to be involved in tumor proliferation and drug resistance, it would be crucial to correlate the severity of disease with the different isoforms from RCC samples to generate diagnostic and prognostic markers.
Two‐dimensional polyacrylamide gel electrophoresis (2‐D PAGE) is a powerful tool to separate thousands of polypeptides and to highlight the modification of protein expression in malignant diseases. By applying 2‐D PAGE to ten normal human kidney and ten homologous renal cell carcinoma (RCC) tissues, we found two peptides in all ten normal tissues but not in RCCs and, conversely, two peptides were detected in all RCCs but not in normal tissues. Using matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF‐MS) and internal sequence analysis, the two first peptides were identified as two isoforms of plasma glutathione peroxidase (GPxP). The two other peptides isolated in all RCCs but not in normal tissues were identified by N‐terminal sequence analysis as multimeric forms of manganese superoxide dismutase (Mn‐SOD). No multimeric Mn‐SODs and only two monomeric forms were detected in normal tissues. GPxP and Mn‐SOD are metallo‐enzymes encoded on chromosome 5q32 and on chromosome 6p25, respectively. Their regions are within the locus 5q21 → qter and 6q21‐6q27 on which deletions and translocations are described in some cytogenetic studies of RCC transformation. Therefore, our results might suggest a correlation between the modified expression of GPxP and Mn‐SOD in tumor tissues and chromosomal modifications, and that the two proteins may be putative markers for diagnosis of RCC.*
Two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) is a powerful tool to separate thousands of polypeptides and to highlight the modification of protein expression in malignant diseases. By applying 2-D PAGE to ten normal human kidney and ten homologous renal cell carcinoma (RCC) tissues, we found two peptides in all ten normal tissues but not in RCCs and, conversely, two peptides were detected in all RCCs but not in normal tissues. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and internal sequence analysis, the two first peptides were identified as two isoforms of plasma glutathione peroxidase (GPxP). The two other peptides isolated in all RCCs but not in normal tissues were identified by N-terminal sequence analysis as multimeric forms of manganese superoxide dismutase (Mn-SOD). No multimeric Mn-SODs and only two monomeric forms were detected in normal tissues. GPxP and Mn-SOD are metallo-enzymes encoded on chromosome 5q32 and on chromosome 6p25, respectively. Their regions are within the locus 5q21-->qter and 6q21-6q27 on which deletions and translocations are described in some cytogenetic studies of RCC transformation. Therefore, our results might suggest a correlation between the modified expression of GPxP and Mn-SOD in tumor tissues and chromosomal modifications, and that the two proteins may be putative markers for diagnosis of RCC.
Proteomics methodologies hold great promise in basic renal research and clinical nephrology. The classical approach for proteomic analysis couples two-dimensional gel electrophoresis (2-DE) with protein identification by mass spectrometry, to produce more global information regarding normal protein expression and alterations in different physiological and pathological states. In this report we have expanded the identification of proteins in the renal cortex, improving the previously published map to facilitate the study of different diseases affecting the human kidney. About 250 spots were analyzed by peptide mass fingerprinting, 89 proteins and 74 isoforms for some of them were identified and implemented in the normal human renal cortex 2-DE reference map. This more comprehensive view of the proteome of the human renal cortex could be of invaluable help to the differential proteomic display of urological diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.