West Nile Virus (WNV) is a globally important mosquito borne virus, with significant implications for human and animal health. The emergence and spread of new lineages, and increased pathogenicity, is the cause of escalating public health concern. Pinpointing the environmental conditions that favour WNV circulation and transmission to humans is challenging, due both to the complexity of its biological cycle, and the under-diagnosis and reporting of epidemiological data. Here, we used remote sensing and GIS to enable collation of multiple types of environmental data over a continental spatial scale, in order to model annual West Nile Fever (WNF) incidence across Europe and neighbouring countries. Multi-model selection and inference were used to gain a consensus from multiple linear mixed models. Climate and landscape were key predictors of WNF outbreaks (specifically, high precipitation in late winter/early spring, high summer temperatures, summer drought, occurrence of irrigated croplands and highly fragmented forests). Identification of the environmental conditions associated with WNF outbreaks is key to enabling public health bodies to properly focus surveillance and mitigation of West Nile virus impact, but more work needs to be done to enable accurate predictions of WNF risk.
BackgroundWest Nile Virus (WNV) is an emerging global health threat. Transmission risk is strongly related to the abundance of mosquito vectors, typically Culex pipiens in Europe. Early-warning predictors of mosquito population dynamics would therefore help guide entomological surveillance and thereby facilitate early warnings of transmission risk.MethodsWe analysed an 11-year time series (2001 to 2011) of Cx. pipiens mosquito captures from the Piedmont region of north-western Italy to determine the principal drivers of mosquito population dynamics. Linear mixed models were implemented to examine the relationship between Cx. pipiens population dynamics and environmental predictors including temperature, precipitation, Normalized Difference Water Index (NDWI) and the proximity of mosquito traps to urban areas and rice fields.ResultsWarm temperatures early in the year were associated with an earlier start to the mosquito season and increased season length, and later in the year, with decreased abundance. Early precipitation delayed the start and shortened the length of the mosquito season, but increased total abundance. Conversely, precipitation later in the year was associated with a longer season. Finally, higher NDWI early in the year was associated with an earlier start to the season and increased season length, but was not associated with abundance. Proximity to rice fields predicted higher total abundance when included in some models, but was not a significant predictor of phenology. Proximity to urban areas was not a significant predictor in any of our models. Predicted variations in start of the season and season length ranged from one to three weeks, across the measured range of variables. Predicted mosquito abundance was highly variable, with numbers in excess of 1000 per trap per year when late season temperatures were low (average 21°C) to only 150 when late season temperatures were high (average 30°C).ConclusionsClimate data collected early in the year, in conjunction with local land use, can be used to provide early warning of both the timing and magnitude of mosquito outbreaks. This potentially allows targeted mosquito control measures to be implemented, with implications for prevention and control of West Nile Virus and other mosquito borne diseases.
Background Aedes albopictus and Culex pipiens larvae reared in the same breeding site compete for resources, with an asymmetrical outcome that disadvantages only the latter species. The impact of these interactions on the overall ecology of these two species has not yet been assessed in the natural environment. In the present study, the temporal patterns of adult female mosquitoes from both species were analysed in north-eastern Italy, and substantial temporal shifts between abundance curves of Cx. pipiens and Ae. albopictus were observed in several sites. To understand which factors can drive the observed temporal shifts, we developed a mechanistic model that takes explicitly into account the effect of temperature on the development and survival of all mosquito stages. We also included into the model the effect of asymmetric interspecific competition, by adding a mortality term for Cx. pipiens larvae proportional to the larval abundance of Ae. albopictus within the same breeding site. Model calibration was performed through a Markov Chain Monte Carlo approach using weekly capture data collected in our study sites during 2014 and 2015.ResultsIn almost half of observation sites, temporal shifts were due to competition, with an early decline of Cx. pipiens caused by the concurrent rise in abundance of its competitor, and this effect was enhanced by higher abundance of both species. We estimate that competition may reduce Cx. pipiens abundance in some sites by up to about 70%. However, in some cases temporal shifts can also be explained in the absence of competition between species resulting from a “temporal niche” effect, when the optimal fitness to environmental conditions for the two species are reached at different times of the year.ConclusionsOur findings demonstrate the importance of considering ecological interactions and, in particular, competition between mosquito species in temperate climates, with important implications for risk assessment of mosquito transmitted pathogens, as well as the implementation of effective control measures.Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-017-2041-8) contains supplementary material, which is available to authorized users.
Culex pipiens mosquito is a species widely spread across Europe and represents a competent vector for many arboviruses such as West Nile virus (WNV), which has been recently circulating in many European countries, causing hundreds of human cases. In order to identify the main determinants of the high heterogeneity in Cx. pipiens abundance observed in Piedmont region (Northwestern Italy) among different seasons, we developed a density-dependent stochastic model that takes explicitly into account the role played by temperature, which affects both developmental and mortality rates of different life stages. The model was calibrated with a Markov chain Monte Carlo approach exploring the likelihood of recorded capture data gathered in the study area from 2000 to 2011; in this way, we disentangled the role played by different seasonal eco-climatic factors in shaping the vector abundance. Illustrative simulations have been performed to forecast likely changes if temperature or density–dependent inputs would change. Our analysis suggests that inter-seasonal differences in the mosquito dynamics are largely driven by different temporal patterns of temperature and seasonal-specific larval carrying capacities. Specifically, high temperatures during early spring hasten the onset of the breeding season and increase population abundance in that period, while, high temperatures during the summer can decrease population size by increasing adult mortality. Higher densities of adult mosquitoes are associated with higher larval carrying capacities, which are positively correlated with spring precipitations. Finally, an increase in larval carrying capacity is expected to proportionally increase adult mosquito abundance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.