We begin the mathematical study of Isogeometric Analysis based on NURBS (nonuniform rational B-splines). Isogeometric Analysis is a generalization of classical Finite Element Analysis (FEA) which possesses improved properties. For example, NURBS are capable of more precise geometric representation of complex objects and, in particular, can exactly represent many commonly engineered shapes, such as cylinders, spheres and tori. Isogeometric Analysis also simplifies mesh refinement because the geometry is fixed at the coarsest level of refinement and is unchanged throughout the refinement process. This eliminates geometrical errors and the necessity of linking the refinement procedure to a CAD representation of the geometry, as in classical FEA. In this work we study approximation and stability properties in the context of h-refinement. We develop approximation estimates based on a new Bramble-Hilbert lemma in so-called "bent" Sobolev spaces appropriate for NURBS approximations and establish inverse estimates similar to those for finite elements. We apply the theoretical results to several cases of interest including elasticity, isotropic incompressible elasticity and Stokes flow, and advection-diffusion, and perform numerical tests which corroborate the mathematical results. We also perform numerical calculations that involve hypotheses outside our theory and these suggest that there are many other interesting mathematical properties of Isogeometric Analysis yet to be proved.
We initiate the study of collocation methods for NURBS-based isogeometric analysis. The idea is to connect the superior accuracy and smoothness of NURBS basis functions with the low computational cost of collocation. We develop a one-dimensional theoretical analysis, and perform numerical tests in one, two and three dimensions. The numerical results obtained con¯rm theoretical results and illustrate the potential of the methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.