1. The flow of individuals among communities and their interactions with local environmental filters are increasingly recognised as determinants of biodiversity patterns in riverine ecosystems. Both incoming dispersers and local conditions are expected to systematically change along connectivity gradients from headwaters to downstream communities. However, the interplay between isolation-centrality gradients and environmental conditions as determinants of biodiversity structure and function has seldom been considered. 2. Here, we represented the dendritic structure of the Negro River basin riverscape (Uruguay) in a directed graph quantifying the isolation-centrality of each river section and evaluated the direct and indirect pathways by which riverscape structure and environmental local drivers determine fish community assembly. 3. Fish communities (n = 58) were sampled following a stratified sampling design that properly represents this isolation-centrality connectivity gradient through the riverscape. In each community, fish abundance, biomass, richness, and functional diversity were estimated, and the direct and indirect hypothesised connections among them were evaluated with structural equation models. 4. We showed that the range of isolation among river sections determines a 2-fold, 5-fold, and 25-fold variation in total fish richness, abundance, and biomass, respectively. Additionally, isolation-centrality was positively associated with local temperature and conductivity, while negatively related to local depth. These variables and taxonomic richness accounted for most of the variation in total fish biomass (81%) herein used as measurement of ecosystem function. Local fish abundance was negatively and positively associated with functional evenness and taxonomic richness, respectively. Furthermore, once the effect of isolation on biomass and richness was accounted for, an effect of diversity on biomass became evident.
Physical-chemical and biologicaldiversity of streams are influenced by the land use in their watersheds. Plastics currently make up the most important waste asset, representing an important part of the transported and accumulated material in water courses. This work analyzes the consumption of plastics debris by the fish communities in streams with two contrasting types of land use. We worked with threestreams impacted by urbanization and threeby extensive ranching. The stomach and intestinal contents of 309 individuals of 29 species were analyzed, by a modified alkaline digestion, and observed under a stereo microscope with polarized light. A total of 373 plastic itemswere found, of which the majority corresponded to fibers (318). A significant difference was found between the percentage of individuals that consumed plastic debrisbetween both systems (51.6% in ranchers and 76.6% in urban, p = 0.014 Mood’s Median), but no difference was found in the average ingested per individual. This study establishes the first baseline on plastic debris consumption by fish in Uruguayan streams, showing the extent of the plastic and microplastic pollution problem. Although there are differences between the analyzed sites, we also observed significant contamination in streams far from urbanization.
The Neotropics represent a hotspot for freshwater biodiversity with vast number of fish species of scarce ecological knowledge. This hold true for the Uruguay River, where fish assemblages and their diets remain unexplored. Fish assemblages were surveyed in 14 sites along its main course, from headwaters to mouth (approximately 1800 km), with the aim to identify the trophic roles of fish and to describe trophic structure of these assemblages. Following standardized samplings, diet was determined to perform a trophic classification of species. One hundred species (2309 gut contents) were analysed and classified into four trophic groups subdivided into eight lower-level groups: Piscivore, piscivore-invertivore, detritivore, omnivore-detritivore, omnivore-invertivore, omnivore-planktivore and omnivore-herbivore. The trophic structure of the assemblages varied along the river, with the relative species richness of fish consuming terrestrial invertebrates increasing towards the middle river section, probably driven by the large floodplains in that areas, supporting global theories such as flood pulse concept. This study describes the feeding habits of fish along the Uruguay River, being the first dietary description for 29 species. This knowledge is essential for management and conservation, serving as baseline in the context of future environmental changes and generates novel evidence about the functioning of ecosystems in this scarcely studied climatic region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.