Impairment of the fibrinolytic system, caused primarily by increases in the plasma levels of plasminogen activator inhibitor (PAI) type 1, are frequently found in diabetes and the insulin-resistance syndrome. Among the factors responsible for the increases of PAI-1, insulin has recently attracted attention. In this study, we analyzed the effects of insulin on PAI-1 biosynthesis in HepG2 cells, paying particular attention to the signaling network evoked by this hormone. Experiments performed in CHO cells overexpressing the insulin receptor indicate that insulin increases PAI-1 gene transcription through interaction with its receptor. By using inhibitors of the different signaling pathways evoked by insulinreceptor binding, it has been shown that the biosynthesis of PAI-1 is due to phosphatidylinositol (PI) 3-kinase activation, followed by protein kinase C and ultimately by mitogen-activated protein (MAP) kinase activation and extracellular signal-regulated kinase 2 phosphorylation. We also showed that this pathway is Ras-independent. Transfection of HepG2 cells with several truncations of the PAI-1 promoter coupled to a CAT gene allowed us to recognize two major response elements located in the regions between ؊804 and ؊708 and between ؊211 and ؊54. Electrophoretic mobility shift assay identified three binding sites for insulin-induced factors, all colocalized with putative Sp1 binding sites. Using supershifting antibodies, the binding of Sp1 could only be confirmed at the binding site located just upstream from the transcription start site of the PAI-1 promoter. A construct comprising four tandem repeat copies of the ؊93/؊62 region of the PAI-1 promoter linked to CAT was transcriptionally activated in HepG2 cells by insulin. These results outline the central role of MAP kinase activation in the regulation of PAI-1 induced by insulin. Diabetes
Summary. Obesity is associated with elevated levels of leptin in the blood. Elevated leptin is a risk factor for thrombosis in humans, and leptin administration promotes platelet activation and thrombosis in the mouse. The current study examines the effect of leptin on human platelets, and provides initial insights into the nature of the leptin receptor on these platelets. Leptin potentiated the aggregation of human platelets induced by low concentrations of ADP, collagen and epinephrine. However, the response varied significantly between donors, with platelets from some donors (approximately 40%) consistently responding to leptin (responders) and those from other donors (approximately 60%) never responding (non-responders). Western blotting and reverse transcriptase-polymerase chain reaction (RT-PCR) experiments showed that platelets from both groups only express the signaling form of the leptin receptor, and that responder platelets express higher levels of this receptor than nonresponders. Ligand-binding assays demonstrate specific, saturable binding of leptin to platelets from both groups with apparent K d values of 76 ± 20 nM for responders and 158 ± 46 nM for non-responders. Thus, the decreased sensitivity of non-responder platelets to leptin does not result from the absence of the signaling form of this receptor, but may reflect differences in its level of expression and/or affinity for leptin. These preliminary studies demonstrate that platelets are a major source of leptin receptor in the circulation, and suggest that leptin-responsive individuals may have a higher risk for obesity-associated thrombosis than non-responsive individuals.
SummaryOxidative modification of LDL, which dysregulates the homeostasis between blood and vascular cells, and alterations of endothelial function are considered among the early events in the pathogenesis of atherosclerosis. This study was designed to evaluate the impact of progressive LDL oxidation on the thrombotic response both in vitro and in vivo, and to address the potential effect of antioxidants. Tissue factor was induced by progressive LDL oxidation in HUVEC, and this event was in parallel to the appearance of the apoptotic phenotype. Both these phenomena were mediated by ERK1/2 activation and were prevented by LDL pre-enrichment with antioxidants. In contrast, antioxidants failed to affect tPA and PAI-1 secretion, which was increased by LDL, either native or oxidized. Tissue factor-pathway inhibitor was also increased upon HUVEC exposure to progressively oxidized LDL. LDL, in the presence of an oxidative agent, trigger a thrombogenic response in vivo, mostly TF-dependent, in an in situ model of platelet deposition. This effect was markedly attenuated when LDL were enriched with antioxidants. It can be concluded that vascular thrombogenicity is induced by progressive LDL oxidation and that alterations of the antioxidant/oxidant balance of the LDL particle in favor of the antioxidant tone are protective against the thrombotic response triggered by oxidative stress. The extrapolation of these data in a clinical setting, even if not easy, offers potential insights for the use of antioxidants in the prevention of thrombotic complications associated with atherothrombosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.