In Italy, the sale of raw milk from vending machines has been allowed since 2004. Boiling treatment before its use is mandatory for the consumer, because the raw milk could be an important source of foodborne pathogens. This study fits into this context with the aim to evaluate the microbiological quality of 30 raw milk samples periodically collected (March 2013 to July 2013) from 3 vending machines located in Molise, a region of southern Italy. Milk samples were stored for 72 h at 4 °C and then subjected to different treatments, such as boiling and microwaving, to simulate domestic handling. The results show that all the raw milk samples examined immediately after their collection were affected by high microbial loads, with values very close to or even greater than those acceptable by Italian law. The microbial populations increased during refrigeration, reaching after 72 h values of about 8.0 log cfu/mL for Pseudomonas spp., 6.5 log cfu/mL for yeasts, and up to 4.0 log cfu/mL for Enterobacteriaceae. Boiling treatment, applied after 72 h to refrigerated milk samples, caused complete decontamination, but negatively affected the nutritional quality of the milk, as demonstrated by a drastic reduction of whey proteins. The microwave treatment at 900 W for 75 s produced microbiological decontamination similar to that of boiling, preserving the content in whey proteins of milk. The microbiological characteristics of raw milk observed in this study fully justify the obligation to boil the raw milk from vending machines before consumption. However, this study also showed that domestic boiling causes a drastic reduction in the nutritional value of milk. Microwave treatment could represent a good alternative to boiling, on the condition that the process variables are standardized for safe domestic application.
Lactic acid bacteria could positively affect the health of honey bees, including nutritional supplementation, immune system development and pathogen colonization resistance. Based on these considerations the present study evaluated predominant Lactic Acid Bacteria (LAB) species from beebread as well as from the social stomach and midgut of Apis mellifera ligustica honey bee foragers. In detail, for each compartment, the diversity in species and biotypes was ascertained through multiple culture-dependent approaches, consisting of Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE), 16S rRNA gene sequencing and Randomly Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR). The study of a lactic acid bacteria community, performed with PCR-DGGE and sequence analysis targeting the V1–V3 region of the 16S rRNA gene (rDNA), highlighted the presence of a few species, including Apilactobacillus kunkeei, Lactiplantibacillus plantarum, Fructobacillus fructosus, Levilactobacillus brevis and Lactobacillus delbrueckii subsp. lactis. Depending on the different compartments, diverse levels of biodiversity in species were found. Particularly, a very low inter-species biodiversity was detected in the midgut that was prevalently dominated by the presence of Apilactobacillus kunkeei. On the other hand, the beebread was characterized by a reasonable biodiversity showing the presence of five species and the predominance of Apilactobacillus kunkeei, Lactiplantibacillus plantarum and Fructobacillus fructosus. The RAPD-PCR analysis performed on the three predominant species allowed the differentiation into several biotypes for each species. Moreover, a relationship between biotypes and compartments has been detected and each biotype was able to express a specific biochemical profile. The biotypes that populated the social stomach and midgut were able to metabolize sugars considered toxic for bees while those isolated from beebread could contribute to release useful compounds with functional properties. Based on this knowledge, new biotechnological approaches could be developed to improve the health of honey bees and the quality of bee products.
The present study evaluated the physico-chemical and microbiological features of Ventricina, considering for the first time the presence of different compartments deriving from the technology of production. In fact meat pieces (pork muscle and fat cut into cubes of about 10-20cm), mixed with other ingredients and then stuffed into pig bladder, are still distinguishable at the end of the ripening. They appear delimited on the outside by the casing and inside by thin layers consisting of spices (mainly red pepper powder), salt and meat juices. Our results showed that the exterior (portion of the product in contact with the casing), the interstice (area between the different cubes of meat or fat) and the heart (the inner portion of meat cubes) had distinctive values of pH and a, and a typical microbial progression, so that they can be considered as different ecological niches, here called microenvironments. The study of lactic acid bacteria population, performed with PCR-DGGE and sequence analysis targeting the V1-V3 region of the 16S rRNA gene (rDNA), highlighted the presence of a few species, including Lactobacillus sakei, Lb. plantarum, Weissella hellenica and Leuconostoc mesenteroides. The RAPD-PCR analysis performed on Lb. sakei, recognised as the predominant species, allowed the differentiation into three biotypes, with that characterised by the highest acidifying and proteolytic activities and the highest ability to grow in the presence of sodium chloride prevailing. This leading biotype, detectable in the interstice during the entire ripening period, was isolated in the microenvironments exterior and heart starting from the 30th d of ripening, and it was the sole biotype present at the end of the ripening. The analysis of microenvironments through the scanning electron microscopy (SEM) evidenced the presence of micro-channels, which could favour the microbial flow from the interstice to the exterior and the heart. Moreover, the SEM analysis allowed the detection of biofilms, recognised as responsible for the correct colonisation of the different meat niches.
Apilactobacillus kunkeei is an insect symbiont with documented beneficial effects on the health of honeybees. It belongs to fructophilic lactic acid bacteria (FLAB), a subgroup of lactic acid bacteria (LAB) notably recognized for their safe status. This fact, together with its recurrent isolation from hive products that are traditionally part of the human diet, suggests its possible safe use as human probiotic. Our data concerning three strains of A. kunkeei isolated from bee bread and honeybee gut highlighted several interesting features, such as the presence of beneficial enzymes (β-glucosidase, β-galactosidase and leucine arylamidase), the low antibiotic resistance, the ability to inhibit P. aeruginosa and, for one tested strain, E. faecalis, and an excellent viability in presence of high sugar concentrations, especially for one strain tested in sugar syrup stored at 4 °C for 30 d. This datum is particularly stimulating, since it demonstrates that selected strains of A. kunkeei can be used for the probiotication of fruit preparations, which are often used in the diet of hospitalized and immunocompromised patients. Finally, we tested for the first time the survival of strains belonging to the species A. kunkeei during simulated gastrointestinal transit, detecting a similar if not a better performance than that showed by Lacticaseibacillus rhamnosus GG, used as probiotic control in each trial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.