Radiofrequency (RF) waves from Wi-Fi (wireless fidelity) technologies have become ubiquitous, with Internet access spreading into homes, and public areas. The human body harbors multipotent stem cells with various grading of potentiality. Whether stem cells may be affected by Wi-Fi RF energy remains unknown. We exposed mouse embryonic stem (ES) cells to a Radio Electric Asymmetric Conveyer (REAC), an innovative device delivering Wi-Fi RF of 2.4 GHz with its conveyer electrodes immersed into the culture medium. Cell responses were investigated by real-time PCR, Western blot, and confocal microscopy. Single RF burst duration, radiated power, electric and magnetic fields, specific absorption rate, and current density in culture medium were monitored. REAC stimulation primed transcription of genes involved in cardiac (GATA4, Nkx-2.5, and prodynorphin), skeletal muscle (myoD) and neuronal (neurogenin1) commitment, while downregulating the self renewal/pluripotency-associated genes Sox2, Oct4, and Nanog. REAC exposure enhanced the expression of cardiac, skeletal, and neuronal lineage-restricted marker proteins. The number of spontaneously beating ES-derived myocardial cells was also increased. In conclusion, REAC stimulation provided a "physical milieu" optimizing stem cell expression of pluripotentiality and the attainment of three major target lineages for regenerative medicine, without using chemical agonists or vector-mediated gene delivery.
Somatic cells can be directly reprogrammed to alternative differentiated fates without first becoming stem/progenitor cells. Nevertheless, the initial need for viral-mediated gene delivery renders this strategy unsafe in humans. Here, we provide evidence that exposure of human skin fibroblasts to a Radio Electric Asymmetric Conveyer (REAC), an innovative device delivering radio electric conveyed fields at a radiofrequency of 2.4 GHz, afforded remarkable commitment toward cardiac, neuronal, and skeletal muscle lineages. REAC induced the transcription of tissue-restricted genes, including Mef2c, Tbx5, GATA4, Nkx2.5, and prodynorphin for cardiac reprogramming, as well as myoD, and neurogenin 1 for skeletal myogenesis and neurogenesis, respectively. Conversely, REAC treatment elicited a biphasic effect on a number of stemness-related genes, leading to early transcriptional increase of Oct4, Sox2, cMyc, Nanog, and Klf4 within 6-20 h, followed by a downregulation at later times. The REAC action bypassed a persistent reprogramming toward an induced pluripotent stem cell-like state and involved the transcriptional induction of the NADPH oxidase subunit Nox4. Our results show for the first time the feasibility of using a physical stimulus to afford the expression of pluripotentiality in human adult somatic cells up to the attainment of three major target lineages for regenerative medicine.
Human adipose-derived stem cells (hASCs) have been recently proposed as a suitable tool for regenerative therapies for their simple isolation procedure and high proliferative capability in culture. Although hASCs can be committed into different lineages in vitro, the differentiation is a low-yield and often incomplete process. We have recently developed a novel nonenzymatic method and device, named Lipogems, to obtain a fat tissue derivative highly enriched in pericytes/mesenchymal stem cells by mild mechanical forces from human lipoaspirates. When compared to enzymatically dissociated cells, Lipogems-derived hASCs exhibited enhanced transcription of vasculogenic genes in response to provasculogenic molecules, suggesting that these cells may be amenable for further optimization of their multipotency. Here we exposed Lipogems-derived hASCs to a radioelectric asymmetric conveyer (REAC), an innovative device asymmetrically conveying radioelectric fields, affording both enhanced differentiating profiles in mouse embryonic stem cells and efficient direct multilineage reprogramming in human skin fibroblasts. We show that specific REAC exposure remarkably enhanced the transcription of prodynorphin, GATA-4, Nkx-2.5, VEGF, HGF, vWF, neurogenin-1, and myoD, indicating the commitment toward cardiac, vascular, neuronal, and skeletal muscle lineages, as inferred by the overexpression of a program of targeted marker proteins. REAC exposure also finely tuned the expression of stemness-related genes, including NANOG, SOX-2, and OCT-4. Noteworthy, the REAC-induced responses were fashioned at a significantly higher extent in Lipogems-derived than in enzymatically dissociated hASCs. Therefore, REAC-mediated interplay between radioelectric asymmetrically conveyed fields and Lipogemsderived hASCs appears to involve the generation of an ideal "milieu" to optimize multipotency expression from human adult stem cells in view of potential improvement of future cell therapy efforts.
Decline in the gene expression of senescence repressor Bmi1, and telomerase, together with telomere shortening, underlay senescence of stem cells cultured for multiple passages. Here, we investigated whether the impairment of senescence preventing mechanisms can be efficiently counteracted by exposure of human adipose-derived stem cells to radio electric asymmetrically conveyed fields by an innovative technology, named Radio Electric Asymmetric Conveyer (REAC). Due to REAC exposure, the number of stem cells positively stained for senescence associated β-galactosidase was significantly reduced along multiple culturing passages. After a 90-day culture, REAC-treated cells exhibited significantly higher transcription of Bmi1 and enhanced expression of other stem cell pluripotency genes and related proteins, compared to unexposed cells. Transcription of the catalytic telomerase subunit (TERT) was also increased in REAC-treated cells at all passages. Moreover, while telomere shortening occurred at early passages in both REAC-treated and untreated cells, a significant rescue of telomere length could be observed at late passages only in REAC-exposed cells. Thus, REAC-asymmetrically conveyed radio electric fields acted on a gene and protein expression program of both telomerase-independent and telomerase-dependent patterning to optimize stem cell ability to cope with senescence progression.
Recent evidence suggests that ageing-related diseases could result in an accelerated loss of self-renewal capability of adult stem cells, normally involved in replacing damaged cellular elements. In previous works, we highlighted that a specific treatment, named tissue optimization-regenerative (TO-RGN), of radio-electric asymmetric conveyer (REAC) technology, influenced gene expression profiles controlling stem cell differentiation and pluripotency of human skin-derived fibroblasts in vitro. The purpose of the present work was to verify whether TO-RGN may also be effective in counteracting the expression of the senescence marker beta-galactosidase and of senescence-associated gene expression patterning, engaged during prolonged culture of human adipose-derived stem cells (hADSCs). Following TO-RGN exposure, we observed a significant downregulation in beta-galactosidase staining and in the expression of the senescence mediator genes p16INK4, ARF, p53, and p21CIP1. Moreover, differently formed untreated cells, TO-RGN-exposed hADSCs maintained their typical fibroblast-like morphology and exhibited a multilineage potential even at late passages, as shown by the remarkable preservation of commitment to osteogenic, adipogenic, chondrogenic, and vasculogenic fates, both at morphologic and gene expression levels. In conclusion, our study highlights a positive effect of TO-RGN in counteracting degenerative senescence processes in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.