The actuation mechanism is a crucial aspect in the design of morphing structures due to the very stringent requirements involving actuation torque, consumed power, and allowable size and weight.\ud
In the framework of the CRIAQ MD0-505 project, novel design strategies are investigated to enable morphing of aeronautical structures. This paper deals with the design of a morphing aileron with the main focus on the actuation technology. The morphing aileron consists of segmented ’finger-like’ ribs capable of changing the airfoil camber in order to match target aerodynamic shapes. In this work, lightweight and compact actuation kinematics driven by electromechanical actuators are investigated to actuate the morphing device. An unshafted distributed servo-electromechanical actuation arrangement is employed to realise the transition from the baseline configuration to a set of target aerodynamic shapes by also withstanding the aerodynamics loads. Numerical investigations are detailed to identify the optimal actuation architecture matching as well as the system integrability and structural compactness
Design of morphing wings at increasing TRL is common to several research programs worldwide. They are focused on the improvement of their performance that can be expressed in several ways, indeed: aerodynamic efficiency optimization, fuel consumption reduction, COx and NOx emission reduction and so on, or targeted to overcome the classical drawbacks related to the introduction of a novel technology such as system complexity increase and management of certification aspects. The Consortium for Research and Innovation in Aerospace in Quebec (CRIAQ) lunched project MD0505 that can be inserted in this crowded frame. The target of this cooperation, involving Canadian and Italian academies and a research centre, is the development of a camber "morphing aileron" integrated on an innovative full scale wing tip of the next generation regional aircraft. This paper focuses on the preliminary design and the numerical modeling of its architecture. The structural layout is, at the beginning, described in detail and furthermore, a finite element (FE) model of the entire aileron architecture is assessed and used to verify the structural integrity under prescribed operational conditions.
A new wing-tip concept with morphing upper surface and interchangeable conventional and morphing ailerons was designed, manufactured, bench and wind-tunnel tested. The development of this wing-tip model was performed in the frame of an international CRIAQ project, and the purpose was to demonstrate the wing upper surface and aileron morphing capabilities in improving the wing-tip aerodynamic performances. During numerical optimisation with ‘in-house’ genetic algorithm software, and during wind-tunnel experimental tests, it was demonstrated that the air-flow laminarity over the wing skin was promoted, and the laminar flow was extended with up to 9% of the chord. Drag coefficient reduction of up to 9% was obtained when the morphing aileron was introduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.