Combinatorial auctions (CAs) are used to allocate multiple items among bidders with complex valuations. Since the value space grows exponentially in the number of items, it is impossible for bidders to report their full value function even in medium-sized settings. Prior work has shown that current designs often fail to elicit the most relevant values of the bidders, thus leading to inefficiencies. We address this problem by introducing a machine learning-based elicitation algorithm to identify which values to query from the bidders. Based on this elicitation paradigm we design a new CA mechanism we call PVM, where payments are determined so that bidders’ incentives are aligned with allocative efficiency. We validate PVM experimentally in several spectrum auction domains, and we show that it achieves high allocative efficiency even when only few values are elicited from the bidders.
In this paper, we present a machine learning-powered iterative combinatorial auction (CA). The main goal of integrating machine learning (ML) into the auction is to improve preference elicitation, which is a major challenge in large CAs. In contrast to prior work, our auction design uses value queries instead of prices to drive the auction. The ML algorithm is used to help the auction decide which value queries to ask in every iteration. While using ML inside an auction introduces new challenges, we demonstrate how we obtain a design that is individually rational, has good incentives, and is computationally practical. We benchmark our new auction against the well-known combinatorial clock auction (CCA). Our results indicate that, especially in large domains, our ML-powered auction can achieve higher allocative e ciency than the CCA, even with only a small number of value queries.
Iterative combinatorial auctions (CAs) are often used in multibillion dollar domains like spectrum auctions, and speed of convergence is one of the crucial factors behind the choice of a specific design for practical applications. To achieve fast convergence, current CAs require careful tuning of the price update rule to balance convergence speed and allocative efficiency. Brero and Lahaie (2018) recently introduced a Bayesian iterative auction design for settings with singleminded bidders. The Bayesian approach allowed them to incorporate prior knowledge into the price update algorithm, reducing the number of rounds to convergence with minimal parameter tuning. In this paper, we generalize their work to settings with no restrictions on bidder valuations. We introduce a new Bayesian CA design for this general setting which uses Monte Carlo Expectation Maximization to update prices at each round of the auction. We evaluate our approach via simulations on CATS instances. Our results show that our Bayesian CA outperforms even a highly optimized benchmark in terms of clearing percentage and convergence speed.
We introduce the use of reinforcement learning for indirect mechanisms, working with the existing class of sequential price mechanisms, which generalizes both serial dictatorship and posted price mechanisms and essentially characterizes all strongly obviously strategyproof mechanisms. Learning an optimal mechanism within this class forms a partially-observable Markov decision process. We provide rigorous conditions for when this class of mechanisms is more powerful than simpler static mechanisms, for sufficiency or insufficiency of observation statistics for learning, and for the necessity of complex (deep) policies. We show that our approach can learn optimal or near-optimal mechanisms in several experimental settings.
Haptic technologies provide physical sensations in the interaction with a computing system, by exploiting the human sense of touch and by applying forces, vibrations, or motions to the user hands or body. Considering their features, they can be a useful tool in life-science teaching, especially when molecules are involved. For this purpose, a framework composed of an haptic device and a visual interface for molecular exploration has been developed to simulate molecular and intermolecular interactions . Furthermore, this work evaluates the visual and haptic tool for molecular exploration in a didactic context, performing tests and interviews with students. The final aim is to properly develop the features of the tool, in order to make it suitable for the introduction in chemistry education. Preliminary results show positive and effective responses and learning gains from the tasks. It has also been noticed that the use of such an innovative instrument raises the interest of students in the learning process, which is one of the main benefits of the haptic device
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.