Abstract. Social interactions are one of the key factors to the success of conferences and similar community gatherings. This paper describes a novel application that integrates data from the semantic web, online social networks, and a real-world contact sensing platform. This application was successfully deployed at ESWC09, and actively used by 139 people. Personal profiles of the participants were automatically generated using several Web 2.0 systems and semantic academic data sources, and integrated in real-time with face-to-face contact networks derived from wearable sensors. Integration of all these heterogeneous data layers made it possible to offer various services to conference attendees to enhance their social experience such as visualisation of contact data, and a site to explore and connect with other participants. This paper describes the architecture of the application, the services we provided, and the results we achieved in this deployment.
There has been lately an increased activity of publishing structured data in RDF due to the activity of the Linked Data community 1 . The presence on the Web of such a huge information cloud, ranging from academic to geographic to gene related information, poses a great challenge when it comes to reconcile heterogeneous schemas adopted by data publishers. For several years, the Semantic Web community has been developing algorithms for aligning data models (ontologies). Nevertheless, exploiting such ontology alignments for achieving data integration is still an under supported research topic. The semantics of ontology alignments, often defined over a logical frameworks, implies a reasoning step over huge amounts of data, that is often hard to implement and rarely scales on Web dimensions. This paper presents an algorithm for achieving RDF data mediation based on SPARQL query rewriting. The approach is based on the encoding of rewriting rules for RDF patterns that constitute part of the structure of a SPARQL query.
Abstract. This paper describes the design and implementation of Minimal RDFS semantics based on a backward chaining approach and implemented on a clustered RDF triple store. The system presented, called 4sr, uses 4store as base infrastructure. In order to achieve a highly scalable system we implemented the reasoning at the lowest level of the quad store, the bind operation. The bind operation runs concurrently in all the data slices allowing the reasoning to be processed in parallel among the cluster. Throughout this paper we provide detailed descriptions of the architecture, reasoning algorithms, and a scalability evaluation with the LUBM benchmark. 4sr is a stable tool available under a GNU GPL3 license and can be freely used and extended by the community 1 .
Abstract. In this paper, we present GLARE, a domain-independent system for acquiring, representing and executing clinical guidelines. GLARE is characterized by the adoption of Artificial Intelligence (AI) techniques at different levels in the definition and implementation of the system. First of all, a high-level and user-friendly knowledge representation language has been designed, providing a set of representation primitives. Second, a user-friendly acquisition tool has been designed and implemented, on the basis of the knowledge representation formalism. The acquisition tool provides various forms of help for the expert physicians, including different levels of syntactic and semantic tests in order to check the "well-formedness" of the guidelines being acquired. In particular, extended AI temporal reasoning techniques are used to check the consistency of temporal constraints. Third, a tool for executing guidelines on a specific patient has been made available. The tool relies on an "agenda" technique, which provides great flexibility, including the possibility of managing repeated and/or concurrent actions. The execution module also provides hypothetical reasoning facilities, to support physicians in the comparison of alternative diagnostic and/or therapeutic strategies. The GLARE approach has been successfully tested on clinical guidelines in different domains such as bladder cancer, reflux esophagitis, heart failure and stroke.
Abstract. The massively distributed publication of linked data has brought to the attention of scientific community the limitations of classic methods for achieving data integration and the opportunities of pushing the boundaries of the field by experimenting this collective enterprise that is the linking open data cloud. While reusing existing ontologies is the choice of preference, the exploitation of ontology alignments still is a required step for easing the burden of integrating heterogeneous data sets. Alignments, even between the most used vocabularies, is still poorly supported in systems nowadays whereas links between instances are the most widely used means for bridging the gap between different data sets. We provide in this paper an account of our statistical and qualitative analysis of the network of instance level equivalences in the Linking Open Data Cloud (i.e. the sameAs network) in order to automatically compute alignments at the conceptual level. Moreover, we explore the effect of ontological information when adopting classical Jaccard methods to the ontology alignment task. Automating such task will allow in fact to achieve a clearer conceptual description of the data at the cloud level, while improving the level of integration between datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.