In this paper, we present a Perception-constrained Nonlinear Model Predictive Control (NMPC) framework for the real-time control of multi-rotor aerial vehicles. Our formulation considers both constraints from a perceptive sensor and realistic actuator limitations that are the rotor minimum and maximum speeds and accelerations. The formulation is meant to be generic and considers a large range of multi-rotor platforms (such as underactuated quadrotors or tilted-propellers hexarotors) since it does not rely on differential flatness for the dynamical equations, and a broad range of sensors, such as cameras, lidars, etc... The perceptive constraints are expressed to maintain visibility of a feature point in the sensor's field of view, while performing a reference maneuver. We demonstrate both in simulation and real experiments that our framework is able to exploit the full capabilities of the multi-rotor, to achieve the motion under the aforementioned constraints, and control in real-time the platform at a motor-torque level, avoiding the use of an intermediate unconstrained trajectory tracker.
In this paper, we present a general control architecture that allows fully-actuated aerial robots to autonomously accomplish tasks that require both perception and physical interaction with the external environment. We integrate the novel Flying End-Effector paradigm and a Hybrid Visual Servoing (HVS) scheme to design a general control architecture for fully-actuated aerial robots. Thanks to the proposed solution, a fully-actuated aerial robot can autonomously accomplish tasks that require both perception and physical interaction without resorting to any external force/torque sensor. The control architecture is entirely described, features a wrench observer and an admittance filter, and is subsequently validated on real experiments. The code for the proposed control architecture is provided open-source.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.