In this work, the problem of grasping novel objects with an anthropomorphic hand-arm robotic system is considered. In particular, an algorithm for learning stable grasps of unknown objects has been developed based on an object shape classification and on the extraction of some associated geometric features. Different concepts, coming from fields such as machine learning, computer vision, and robot control, have been integrated together in a modular framework to achieve a flexible solution suitable for different applications. The results presented in this work confirm that the combination of learning from demonstration and reinforcement learning can be an interesting solution for complex tasks, such as grasping with anthropomorphic hands. The imitation learning provides the robot with a good base to start the learning process that improves its abilities through trial and error. The learning process occurs in a reduced dimension subspace learned upstream from human observation during typical grasping tasks. Furthermore, the integration of a synergy-based control module allows reducing the number of trials owing to the synergistic approach.
Tactile data perception is of paramount importance in today’s robotics applications. This paper describes the latest design of the tactile sensor developed in our laboratory. Both the hardware and firmware concepts are reported in detail in order to allow the research community the sensor reproduction, also according to their needs. The sensor is based on optoelectronic technology and the pad shape can be adapted to various robotics applications. A flat surface, as the one proposed in this paper, can be well exploited if the object sizes are smaller than the pad and/or the shape recognition is needed, while a domed pad can be used to manipulate bigger objects. Compared to the previous version, the novel tactile sensor has a larger sensing area and a more robust electronic, mechanical and software design that yields less noise and higher flexibility. The proposed design exploits standard PCB manufacturing processes and advanced but now commercial 3D printing processes for the realization of all components. A GitHub repository has been prepared with all files needed to allow the reproduction of the sensor for the interested reader. The whole sensor has been tested with a maximum load equal to 15N, by showing a sensitivity equal to 0.018V/N. Moreover, a complete and detailed characterization for the single taxel and the whole pad is reported to show the potentialities of the sensor also in terms of response time, repeatability, hysteresis and signal to noise ratio.
In robotic grasping and manipulation, the knowledge of a precise object pose represents a key issue. The point acquires even more importance when the objects and, then, the grasping areas become smaller. This is the case of Deformable Linear Object manipulation application where the robot shall autonomously work with thin wires which pose and shape estimation could become difficult given the limited object size and possible occlusion conditions. In such applications, a vision-based system could not be enough to obtain accurate pose and shape estimation. In this work the authors propose a Time-of-Flight pre-touch sensor, integrated with a previously designed tactile sensor, for an accurate estimation of thin wire pose and shape. The paper presents the design and the characterization of the proposed sensor. Moreover, a specific object scanning and shape detection algorithm is presented. Experimental results support the proposed methodology, showing good performance. Hardware design and software applications are freely accessible to the reader.
This paper tackles the problem of wire insertion in switchgear assembly according to the current regulations. In particular, the wire connections require that the wire label has to be oriented facing up in order to simplify and speed up testing and maintenance of the switchgear. The proposed approach exploits the a priori knowledge of the scenario with a calibrated RGB camera and a robotic arm to estimate both wire end pose and label position. The procedure combines several techniques (gradient base, trained classifier and stereo vision) to elaborate standard images in order to extract some wire features related to its shape and label. Specific frames are fixed according to estimated features and then used to correctly complete the task by using a robotic system. Experiments are reported to verify the effectiveness of the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.