Aims: A considerable proportion of patients affected by coronavirus respiratory disease (COVID-19) develop cardiac injury. The viral impact in cardiomyocytes deserves, however, further investigations, especially in asymptomatic patients. Methods: We investigated for SARS-CoV-2 presence and activity in heart tissues of six consecutive COVID-19 patients deceased from respiratory failure showing no signs of cardiac involvement and with no history of heart disease. Cardiac autopsy samples were collected within 2 h after death, and then analysed by digital PCR, Western blot, immunohistochemistry, immunofluorescence, RNAScope, and transmission electron microscopy assays. Results: The presence of SARS-CoV-2 into cardiomyocytes was invariably detected in all assays. A variable pattern of cardiomyocyte injury was observed, spanning from absence of cell death and subcellular alterations hallmarks, to intracellular oedema and sarcomere ruptures. In addition, we found active viral transcription in cardiomyocytes, by detecting both sense and antisense SARS-CoV-2 spike RNA. Conclusions: In this autopsy analysis of patients with no clinical signs of cardiac involvement, the presence of SARS-CoV-2 in cardiomyocytes has been detected, determining variable patterns of intracellular damage. These findings suggest the need for cardiologic surveillance in surviving COVID-19 patients not displaying a cardiac phenotype.
Peptidyl-prolyl cis-trans-isomerases are a highly conserved family of immunophilins. The three peptidyl-prolyl cis-trans-isomerase subfamilies are cyclophilins, FK-506-binding proteins, and parvulins. Peptidyl-prolyl cis-trans-isomerases are expressed in multiple human tissues and regulate different cellular functions, e.g. calcium handling, protein folding, and gene expression. Moreover, these subfamilies have been shown to be consistently involved in several cardiac and vascular diseases including heart failure, arrhythmias, vascular stenosis, endothelial dysfunction, atherosclerosis, and hypertension. This review provides a concise description of the peptidyl-prolyl cis-trans-isomerases and presents an incisive selection of studies focused on their relationship with cardiovascular diseases.
Duchenne’s muscular dystrophy is an X-linked neuromuscular disease that manifests as muscle atrophy and cardiomyopathy in young boys. However, a considerable percentage of carrier females are often diagnosed with cardiomyopathy at an advanced stage. Existing therapy is not disease-specific and has limited effect, thus many patients and symptomatic carrier females prematurely die due to heart failure. Early detection is one of the major challenges that muscular dystrophy patients, carrier females, family members and, research and medical teams face in the complex course of dystrophic cardiomyopathy management. Despite the widespread adoption of advanced imaging modalities such as cardiac magnetic resonance, there is much scope for refining the diagnosis and treatment of dystrophic cardiomyopathy. This comprehensive review will focus on the pertinent clinical aspects of cardiac disease in muscular dystrophy while also providing a detailed consideration of the known and developing concepts in the pathophysiology of muscular dystrophy and forthcoming therapeutic options.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.