A new empirical pairwise potential model for ionic and semi-ionic oxides has been developed. Its transferability and reliability have been demonstrated by testing the potentials toward the prediction of structural and mechanical properties of a wide range of silicates of technological and geological importance. The partial ionic charge model with a Morse function is used, and it allows the modeling of the quenching of melts, silicate glasses, and inorganic crystals at high-pressure and high-temperature conditions. The results obtained by molecular dynamics and free energy calculations are discussed in relation to the prediction of structural and mechanical properties of a series of soda lime silicate glasses.
An integrated computational method that couples classical molecular dynamics simulations with density functional theory calculations has been used to simulate the solid-state 17O and 23Na MQMAS, 29Si, 31P, and 23Na static and MAS NMR spectra of the 45S5 Bioglass structural models with up to 248 atoms. Comparison with the experimental spectra collected in this work (the 17O MQMAS spectrum of the 45S5 Bioglass is reported for the first time in the literature) shows an excellent agreement. The results provide deep insights into fundamental open questions regarding the atomic-scale structural details of this glass of great medical interest. In particular, the host silica network, described by the Q
n
distribution (a Q
n
species is a network-forming ion bonded to n bridging oxygens), consists of chains and rings of Q2
Si (67.2%) SiO4 tetrahedra cross-linked with Q3
Si (22.3%) species and terminated by a low quantity of Q1
Si (10.1%) species. No Si−O−P bridges have been detected by both 31P NMR and 17O MQMAS experiments, and therefore isolated orthophosphate units are able to form nanodomains that subtract sodium and calcium cations from their network modifying role into the silicate network. Finally, both the experimental and theoretical results show a mixture of dissimilar cations (Na,Ca) around NBO, according to a nonrandom distribution of these species.
Molecular dynamics simulations and energy-minimization techniques have been applied for the first time to determine the whole set of elastic properties (Young's modulus, shear modulus, bulk modulus, and Poisson's ratio) of alkali silicate glasses with different ion modifiers (Li, Na, and K) in the range 0-30 mol % alkaline oxide. Excellent agreement has been found between the simulation results and the experimental data. The peculiar behavior of the Li-containing glasses with respect to the Na and K ones is extensively discussed in terms of the glass structural features. It is found that the elastic property variation as a function of alkali addition can be explained by three concurrent factors: (1) depolymerization of the silica network; (2) increasing the cohesion of the glass by the establishment of alkali-NBO bonds; and (3) decreasing the free volume with consequent increasing of the glass packing density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.