Automatic harmonic analysis has been an enduring focus of the MIR community, and has enjoyed a particularly vigorous revival of interest in the machine-learning age. We focus here on the specific case of Roman numeral analysis which, by virtue of requiring key/functional information in addition to chords, may be viewed as an acutely challenging use case. We report on three main developments. First, we provide a new meta-corpus bringing together all existing Roman numeral analysis datasets; this offers greater scale and diversity, not only of the music represented, but also of human analytical viewpoints. Second, we examine best practices in the encoding of pitch, time, and harmony for machine learning tasks. The main contribution here is the introduction of full pitch spelling to such a system, an absolute must for the comprehensive study of musical harmony. Third, we devised and tested several neural network architectures and compared their relative accuracy. In the best-performing of these models, convolutional layers gather the local information needed to analyse the chord at a given moment while a recurrent part learns longer-range harmonic progressions. Altogether, our best representation and architecture produce a small but significant improvement on overall accuracy while simultaneously integrating full pitch spelling. This enables the system to retain important information from the musical sources and provide more meaningful predictions for any new input.
Musical co-creativity aims at making humans and computers collaborate to compose music. As an MIR team in computational musicology, we experimented with co-creativity when writing our entry to the "AI Song Contest 2020". Artificial intelligence was used to generate the song's structure, harmony, lyrics, and hook melody independently and as a basis for human composition. It was a challenge from both the creative and the technical point of view: in a very short time-frame, the team had to adapt its own simple models, or experiment with existing ones, to a related yet still unfamiliar task, music generation through AI. The song we propose is called "I Keep Counting". We openly detail the process of songwriting, arrangement, and production. This experience raised many questions on the relationship between creativity and machine, both in music analysis and generation, and on the role AI could play to assist a composer in their work. We experimented with AI as automation, mechanizing some parts of the composition, and especially AI as suggestion to foster the composer's creativity, thanks to surprising lyrics, uncommon successions of sections and unexpected chord progressions. Working with this material was thus a stimulus for human creativity.
While it is relatively easy to start an online advertising campaign, obtaining a high Key Performance Indicator (KPI) can be challenging. A large body of work on this subject has already been performed and platforms known as DSPs are available on the market that deal with such an optimization. From the advertiser's point of view, each DSP is a different black box, with its pros and cons, that needs to be configured. In order to take advantage of the pros of every DSP, advertisers are well-advised to use a combination of them when setting up their campaigns. In this paper, we propose an algorithm for advertisers to add an optimization layer on top of DSPs. The algorithm we introduce, called skott, maximizes the chosen KPI by optimally configuring the DSPs and putting them in competition with each other. skott is a highly specialized iterative algorithm loosely based on gradient descent that is made up of three independent sub-routines, each dealing with a different problem: partitioning the budget, setting the desired average bid, and preventing under-delivery. In particular, one of the novelties of our approach lies in our taking the perspective of the advertisers rather than the DSPs. Synthetic market data is used to evaluate the efficiency of skott against other state-of-the-art approaches adapted from similar problems. The results illustrate the benefits of our proposals, which greatly outperforms the other methods.
We present Multitrack Contrapuntal Music Archive (MCMA, available at https://mcma.readthedocs.io), a symbolic dataset of pieces specifically curated to comprise, for any given polyphonic work, independent voices. So far, MCMA consists only of pieces from the Baroque repertoire but we aim to extend it to other contrapuntal music. MCMA is FAIR-compliant and it is geared towards musicological tasks such as (computational) analysis or education, as it brings to the fore contrapuntal interactions by explicit and independent representation. Furthermore, it affords for a more apt usage of recent advances in the field of natural language processing (e.g., neural machine translation). For example, MCMA can be particularly useful in the context of language-based machine learning models for music generation. Despite its current modest size, we believe MCMA to be an important addition to online contrapuntal music databases, and we thus open it to contributions from the wider community, in the hope that MCMA can continue to grow beyond our efforts. In this article, we provide the rationale for this corpus, suggest possible use cases, offer an overview of the compiling process (data sourcing and processing), and present a brief statistical analysis of the corpus at the time of writing. Finally, future work that we endeavor to undertake is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.