Human activity recognition is a crucial task in several modern applications based on the Internet of Things (IoT) paradigm, from the design of intelligent video surveillance systems to the development of elderly robot assistants. Recently, machine learning algorithms have been strongly investigated to improve the recognition task of human activities. Though, in spite of these research activities, there are not so many studies focusing on the efficient recognition of complex human activities, namely transitional activities, and there is no research aimed at evaluating the effects of noise in data used to train algorithms. In this paper, we bridge this gap by introducing an innovative activity recognition system based on a neural classifier endowed with memory, able to optimize the performance of the classification of both transitional and non-transitional human activities. The system recognizes human activities from unobtrusive IoT devices (such as the accelerometer and gyroscope) integrated in commonly used smartphones. The main peculiarity provided by the proposed system is related to the exploitation of a neural network extended with short-term memory information about the previous activities’ features. The experimental study proves the reliability of the proposed system in terms of accuracy with respect to state-of-the-art classifiers and the robustness of the proposed framework with respect to noise in data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.