Objective. The emotional response to olfactory stimuli implies the activation of a complex cascade of events triggered by structures lying in the limbic system. However, little is known about how this activation is projected up to cerebral cortex and how different cortical areas dynamically interact each other. Approach. In this study, we acquired EEG from human participants performing a passive odor-perception task with odorants conveying positive, neutral and negative valence. A novel methodological pipeline integrating global field power (GFP), independent component analysis (ICA), dipole source localization was applied to estimate effective connectivity in the challenging scenario of single-trial low-synchronized stimulation. Main results. We identified the brain network and the neural paths, elicited at different frequency bands, i.e. θ ( 4 − 7 H z ) , α ( 8 − 12 H z ) and β ( 13 − 30 H z ) , involved in odor valence processing. This brain network includes the orbitofrontal cortex (OFC), the cingulate gyrus (CgG), the superior temporal gyrus (STG), the posterior cingulate cortex/precuneus (PCC/PCu) and the parahippocampal gyrus (PHG). It was analyzed using a time-varying multivariate autoregressive model to resolve time-frequency causal interactions. Specifically, the OFC acts as the main node for odor perception and evaluation of pleasant and unpleasant stimuli, whereas no specific path was observed for a neutral stimulus. Significance. The results introduce new evidences on the role of the OFC during hedonic perception and underpin its specificity during the odor valence assessment. Our findings suggest that, after the odor onset different, bidirectional interactions occur between the OFC and other brain regions associated with emotion recognition/categorization and memory according to the stimulus valence. This outcome unveils how the hedonic olfactory network dynamically changes based on odor valence.
Hypnotizability is a psychophysiological trait measured by scales and associated with several differences, including interoceptive accuracy and the morpho‐functional characteristics of interoception‐related brain regions. The aim of the study was to assess whether the amplitude of the heartbeat evoked cortical potential (HEP), a correlate of interoceptive accuracy, differs in participants with low (lows) and high (highs) hypnotizability scores (assessed by the Stanford Hypnotic Susceptibility Scale, Form A) before and after the induction of hypnosis. ECG and EEG were monitored in 16 highs and 15 lows during an experimental session, including open eyes baseline (B), closed eyes relaxation (R), hypnotic induction (IND), neutral hypnosis (NH), and post session baseline (Post). No significant difference was observed between groups and conditions in autonomic variables. The HEP amplitude was lower in highs than in lows at the right parietal site, likely due to hypnotizability related differences in the functional connection between the right insula and parietal cortex. It increased in highs and decreased in lows across the session, possibly due to the highs' preeminently internally directed attention and to the lows' possible disengagement from the task. Since interoception is involved in several cognitive‐emotional functions, its hypnotizability related differences may contribute to the variability of experience and behavior in daily life.
Augmented reality head mounted display devices (HMDs) provide user's natural view of the real world with enhanced experience through optical superposition of virtual data. Manual-task guidance applications exploiting these systems are particularly suited in computer-aided-surgery. However, the typical working distance of commercial devices is higher than user reachable space, limiting the purpose of manualtask guidance. Specifically, known issues such as the "vergenceaccomodation-conflict" and the "focus-rivalry" may lead to visual fatigue and mental workload worsening task performance. Here, we exploit EEG recordings during a "connecting-the-dots" task performed with and without AR to evaluate the mental workload associated with AR-related visual fatigue. First, we quantify the reduction of users' performance based on starting and end points gap errors. Then, we investigate the effects on AR usage on cortical activity through the analysis of EEG power and Frontal Alpha Asymmetry (FAA) index. Although preliminary, our results suggest that mental workload associated with AR usage may derive from enhanced difficulty associated with the task. Furthermore, a shift in FAA from controlateral to ipsilateral regions seems to confirm this hypothesis.
Hypnotizability is a psychophysiological trait measured by scales and associated with several differences including interoceptive accuracy and the morpho-functional characteristics of interoception-related brain regions. The aim of the study was to assess whether the amplitude of the heartbeat evoked cortical potential (HEP), a correlate of interoceptive accuracy, differs in participants with low (lows) and high (highs) hypnotizability scores (assessed by the Stanford Hypnotic Susceptibility Scale, form A) before and after the induction of hypnosis. ECG and EEG were monitored in 16 highs and 15 lows during an experimental session including open eyes baseline (B), closed eyes relaxation (R), hypnotic induction (IND), neutral hypnosis (NH), post session baseline (Post). No significant difference was observed between groups and conditions in autonomic variables. The HEP amplitude was lower in highs than in lows at the right parietal site, likely due to hypnotizability-related differences in the functional connection between the right insula and parietal cortex. It increased in highs and decreased in lows across the session, possibly due to the highs’ preeminently internally directed attention and to the lows’ possible disengagement from the task. Since interoception is involved in several cognitive-emotional functions, its hypnotizability-related differences may contribute to the variability of experience and behavior in daily life.
Hypnotic susceptibility is a major factor influencing the study of the neural correlates of hypnosis using EEG. In this context, while its effects on the response to hypnotic suggestions are undisputed, less attention has been paid to “neutral hypnosis” (i.e., the hypnotic condition in absence of suggestions). Furthermore, although an influence of opened and closed eye condition onto hypnotizability has been reported, a systematic investigation is still missing. Here, we analyzed EEG signals from 34 healthy subjects with low (LS), medium (MS), and (HS) hypnotic susceptibility using power spectral measures (i.e., TPSD, PSD) and Lempel-Ziv-Complexity (i.e., LZC, fLZC). Indeed, LZC was found to be more suitable than other complexity measures for EEG analysis, while it has been never used in the study of hypnosis. Accordingly, for each measure, we investigated within-group differences between rest and neutral hypnosis, and between opened-eye/closed-eye conditions under both rest and neutral hypnosis. Then, we evaluated between-group differences for each experimental condition. We observed that, while power estimates did not reveal notable differences between groups, LZC and fLZC were able to distinguish between HS, MS, and LS. In particular, we found a left frontal difference between HS and LS during closed-eye rest. Moreover, we observed a symmetric pattern distinguishing HS and LS during closed-eye hypnosis. Our results suggest that LZC is better capable of discriminating subjects with different hypnotic susceptibility, as compared to standard power analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.