p21CIP1/WAF1 belongs to the CIP/KIP family of Cdk inhibitors, and its expression is tightly controlled during the cell cycle, mainly by transcriptional and post-translational mechanisms. Fine regulation of p21 CIP1/WAF1 levels is critical for cell cycle control and for cellular response to stress. In the present work, we describe a novel mechanism to modulate p21 CIP1/WAF1 levels mediated by the human GTSE-1 (G 2 and S phase-expressed-1) protein. Our results provide evidence that hGTSE-1 protects p21 CIP1/WAF1 from proteasome-dependent degradation as part of a functional complex containing the Hsp90-binding TPR protein WISp39. We further show that the hGTSE-1 N-terminal portion is sufficient for p21 CIP1/WAF1 binding and stabilization. Finally, we demonstrate that hGTSE-1 mediated-p21 CIP1/WAF1
The properties of human DNA helicase V (HDH V) were studied in greater detail following an improved purification procedure. From 450 g of cultured cells, <0.1 mg of pure protein was isolated. HDH V unwinds DNA unidirectionally by moving in the 3' to 5' direction along the bound strand in an ATP- and Mg(2+)-dependent fashion. The enzyme is not processive and can also unwind partial RNA-RNA duplexes such as HDH IV and HDH VIII. The M:(r) determined by SDS-PAGE (66 kDa) corresponds to that measured under native conditions, suggesting that HDH V exists as a monomer in the nucleus. Microsequencing of the purified HDH V shows that this enzyme is identical to the far upstream element-binding protein (FBP), a protein that stimulates the activity of the c-myc gene by binding specifically to the 'FUSE' DNA region localized upstream of its promoter. The sequence of HDH V/FBP contains RGG motifs like HDH IV/nucleolin, HDH VIII/G3BP as well as other human RNA and DNA helicases identified by other laboratories.
Background Management and control of the COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus SARS-CoV-2 is critically dependent on quick and reliable identification of the virus in clinical specimens. Detection of viral RNA by a colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) is a simple, reliable and cost-effective assay, deployable in resource-limited settings (RLS). Our objective was to evaluate the intrinsic and extrinsic performances of RT-LAMP in RLS. Methods This is a multicenter prospective observational study of diagnostic accuracy, conducted from October 2020 to February 2021 in four African Countries: Cameroon, Ethiopia, Kenya and Nigeria; and in Italy. We enroled 1657 individuals who were either COVID-19 suspect cases, or asymptomatic and presented for screening. RNA extracted from pharyngeal swabs was tested in parallel by a colorimetric RT-LAMP and by a standard real time polymerase chain reaction (RT-PCR). Findings The sensitivity and specificity of index RT LAMP compared to standard RT-PCR on 1657 prospective specimens from infected individuals was determined. For a subset of 1292 specimens, which underwent exactly the same procedures in different countries, we obtained very high specificity (98%) and positive predictive value (PPV = 99%), while the sensitivity was 87%, with a negative predictive value NPV = 70%, Stratification of RT-PCR data showed superior sensitivity achieved with an RT-PCR cycle threshold (Ct) below 35 (97%), which decreased to 60% above 35. Interpretation In this field trial, RT-LAMP appears to be a reliable assay, comparable to RT-PCR, particularly with medium-high viral loads (Ct < 35). Hence, RT-LAMP can be deployed in RLS for timely management and prevention of COVID-19, without compromising the quality of output.
The HMGA1 architectural transcription factor is an oncogene overexpressed in the vast majority of human cancers. HMGA1 is a highly connected node in the nuclear molecular network and the key aspect of HMGA1 involvement in cancer development is that HMGA1 simultaneously confers cells multiple oncogenic hits, ranging from global chromatin structural and gene expression modifications up to the direct functional alterations of key cellular proteins. Interestingly, HMGA1 also modulates DNA damage repair pathways. In this work, we provide evidences linking HMGA1 with Non-Homologous End Joining DNA repair. We show that HMGA1 is in complex with and is a substrate for DNA-PK. HMGA1 enhances Ligase IV activity and it counteracts the repressive histone H1 activity towards DNA ends ligation. Moreover, breast cancer cells overexpressing HMGA1 show a faster recovery upon induction of DNA double-strand breaks, which is associated with a higher survival. These data suggest that resistance to DNA-damaging agents in cancer cells could be partially attributed to HMGA1 overexpression thus highlighting the relevance of considering HMGA1 expression levels in the selection of valuable and effective pharmacological regimens.
The development of effective gene-therapeutic applications for cardiovascular disorders is in part limited by the lack of appropriate delivery systems. In an attempt to overcome this deficiency, we investigated the ability of baculoviral vectors to transduce human cardiovascular cells, for which data are missing in literature. Additionally, baculovirus ability to transduce target cells was compared to that of an adenoviral vector, a well characterized and widely used viral vector. Transduction experiments, performed using baculo/adenoviral vectors expressing the enhanced green fluorescence protein, revealed that, under the experimental condition considered, baculoviruses but not adenoviruses efficiently transduce human coronary smooth muscle cells (hCSMC); an opposite behavior was noticed for human coronary endothelial cells (hCEC). Thus, baculoviral vectors are potentially indicated as transfer system in the treatment of coronary restenosis, where growth inhibitory genes should reach hCSMC but not hCEC. When used to transduce human cardiomyocytes and fibroblasts, both vectors behaved similarly. Finally, studies on cellular DNA replication revealed a more prolonged and pronounced negative effect on cells transduced by adenoviral compared to baculoviral vectors. Our data indicate that baculoviruses represent an attractive alternative to adenoviruses as transfer vectors in cardiovascular cells and that baculovirus have the potential to be used as gene transfer system in cardiovascular diseases such as restenosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.