We propose a new dataset for the evaluation of food recognition algorithms that can be used in dietary monitoring applications. Each image depicts a real canteen tray with dishes and foods arranged in different ways. Each tray contains multiple instances of food classes. The dataset contains 1027 canteen trays for a total of 3616 food instances belonging to 73 food classes. The food on the tray images has been manually segmented using carefully drawn polygonal boundaries. We have benchmarked the dataset by designing an automatic tray analysis pipeline that takes a tray image as input, finds the regions of interest, and predicts for each region the corresponding food class. We have experimented with three different classification strategies using also several visual descriptors. We achieve about 79% of food and tray recognition accuracy using convolutional-neural-networks-based features. The dataset, as well as the benchmark framework, are available to the research community.
Structure from Motion (SfM) is a pipeline that allows three-dimensional reconstruction starting from a collection of images. A typical SfM pipeline comprises different processing steps each of which tackles a different problem in the reconstruction pipeline. Each step can exploit different algorithms to solve the problem at hand and thus many different SfM pipelines can be built. How to choose the SfM pipeline best suited for a given task is an important question. In this paper we report a comparison of different state-of-the-art SfM pipelines in terms of their ability to reconstruct different scenes. We also propose an evaluation procedure that stresses the SfM pipelines using real dataset acquired with high-end devices as well as realistic synthetic dataset. To this end, we created a plug-in module for the Blender software to support the creation of synthetic datasets and the evaluation of the SfM pipeline. The use of synthetic data allows us to easily have arbitrarily large and diverse datasets with, in theory, infinitely precise ground truth. Our evaluation procedure considers both the reconstruction errors as well as the estimation errors of the camera poses used in the reconstruction.
In this work, we investigate how illuminant estimation techniques can be improved, taking into account automatically extracted information about the content of the images. We considered indoor/outdoor classification because the images of these classes present different content and are usually taken under different illumination conditions. We have designed different strategies for the selection and the tuning of the most appropriate algorithm (or combination of algorithms) for each class. We also considered the adoption of an uncertainty class which corresponds to the images where the indoor/outdoor classifier is not confident enough. The illuminant estimation algorithms considered here are derived from the framework recently proposed by Van de Weijer and Gevers. We present a procedure to automatically tune the algorithms' parameters. We have tested the proposed strategies on a suitable subset of the widely used Funt and Ciurea dataset. Experimental results clearly demonstrate that classification based strategies outperform general purpose algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.