Open authorization (OAuth) is an open protocol, which allows secure authorization in a simple and standardized way from third-party applications accessing online services, based on the representational state transfer (REST) web architecture. OAuth has been designed to provide an authorization layer, typically on top of a secure transport layer such as HTTPS. The Internet of Things (IoTs) refers to the interconnection of billions of resource-constrained devices, denoted as smart objects, in an Internet-like structure. Smart objects have limited processing/memory capabilities and operate in challenging environments, such as low-power and lossy networks. IP has been foreseen as the standard communication protocol for smart object interoperability. The Internet engineering task force constrainedRESTful environments working group has defined the constrained application protocol (CoAP) as a generic web protocol for RESTful-constrained environments, targeting machine-tomachine applications, which maps to HTTP for integration with the existing web. In this paper, we propose an architecture targeting HTTP/CoAP services to provide an authorization framework, which can be integrated by invoking an external oauth-based authorization service (OAS). The overall architecture is denoted as IoT-OAS. We also present an overview of significant IoT application scenarios. The IoT-OAS architecture is meant to be flexible, highly configurable, and easy to integrate with existing services. Among the advantages achieved by delegating the authorization functionality, IoT scenarios benefit by: 1) lower processing load with respect to solutions, where access control is implemented on the smart object; 2) fine-grained (remote) customization of access policies; and 3) scalability, without the need to operate directly on the device.
Abstract-Recently, noncoherent sequence detection schemes for coded linear and continuous phase modulations have been proposed, which deliver hard decisions by means of a Viterbi algorithm. The current trend in digital transmission systems toward iterative decoding algorithms motivates an extension of these schemes. In this paper, we propose two noncoherent soft-output decoding algorithms. The first solution has a structure similar to that of the well-known algorithm by Bahl et al.(BCJR), whereas the second is based on noncoherent sequence detection and a reduced-state soft-output Viterbi algorithm.Applications to the combined detection and decoding of differential or convolutional codes are considered. Further applications to noncoherent iterative decoding of turbo codes and serially concatenated interleaved codes are also considered. The proposed noncoherent detection schemes exhibit moderate performance loss with respect to corresponding coherent schemes and are very robust to phase and frequency instabilities.Index Terms-Iterative decoding, noncoherent decoding/detection, soft-input/soft-output algorithms, turbo (de)coding.
New bounds are proposed for the Marcum-function, which is defined by an integral expression where the 0th-order modified Bessel function appears. The proposed bounds are derived by suitable approximations of the 0th-order modified Bessel function in the integration region of the Marcum-function. They prove to be very tight and outperform bounds previously proposed in the literature. In particular, the proposed bounds are noticeably good for large values of the parameters of the Marcum-function, where previously introduced bounds fail and where exact computation of the function becomes critical due to numerical problems. Index Terms-Marcum-function, modified Bessel function of the first kind, upper and lower bounds.
Abstract-Power conservation is one of the most important issues in wireless ad hoc and sensor networks, where nodes are likely to rely on limited battery power. Transmitting at unnecessarily high power not only reduces the lifetime of the nodes and the network, but also introduces excessive interference. It is in the network designer's best interest to have each node transmit at the lowest possible power while preserving network connectivity. In this paper, we investigate the optimal common transmit power, defined as the minimum transmit power used by all nodes necessary to guarantee network connectivity. This is desirable in sensor networks where nodes are relatively simple and it is difficult to modify the transmit power after deployment. The optimal transmit power derived in this paper is subject to the specific routing and medium access control (MAC) protocols considered; however, the approach can be extended to other routing and MAC protocols as well. In deriving the optimal transmit power, we distinguish ourselves from a conventional graph-theoretic approach by taking realistic physical layer characteristics into consideration. In fact, connectivity in this paper is defined in terms of a quality of service (QoS) constraint given by the maximum tolerable bit error rate (BER) at the end of a multihop route with an average number of hops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.