In patients with suspected dementia with Lewy bodies the detection of the disease-associated α-synuclein in easily accessible tissues amenable to be collected using minimally invasive procedures, remains a major diagnostic challenge. This approach has the potential to take advantage of modern molecular assays for the diagnosis of α–synucleinopathy and, in turn, to optimize the recruitment and selection of patients in clinical trials, using drugs directed at counteracting α-synuclein aggregation. In this study, we explored the diagnostic accuracy of α-synuclein real-time quaking-induced conversion assay by testing olfactory mucosa and CSF in patients with a clinical diagnosis of probable (n = 32) or prodromal (n = 5) dementia with Lewy bodies or mixed degenerative dementia (dementia with Lewy bodies/Alzheimer’s disease) (n = 6). Thirty-eight patients with non-α-synuclein-related neurodegenerative and non-neurodegenerative disorders, including Alzheimer’s disease (n = 10), sporadic Creutzfeldt-Jakob disease (n = 10), progressive supranuclear palsy (n = 8), corticobasal syndrome (n = 1), fronto-temporal dementia (n = 3) and other neurological conditions (n = 6) were also included, as controls. All 81 patients underwent olfactory swabbing while CSF was obtained in 48 participants. At the initial blinded screening of olfactory mucosa samples, 38 out of 81 resulted positive while CSF was positive in 19 samples out of 48 analyzed. After unblinding of the results, 27 positive olfactory mucosa were assigned to patients with probable dementia with Lewy bodies, five with prodromal dementia with Lewy bodies and three to patients with mixed dementia, as opposed to three out 38 controls. Corresponding results of CSF testing disclosed 10 out 10 positive samples in patients with probable dementia with Lewy bodies and six out of six with mixed dementia, in addition to three out of 32 for controls. The accuracy among results of real-time quaking-induced conversion assays and clinical diagnoses was 86.4% in the case of olfactory mucosa and 93.8% for CSF. For the first time, we showed that α-synuclein real-time quaking induced conversion assay detects α-synuclein aggregates in olfactory mucosa of patients with dementia with Lewy bodies and with mixed dementia. Additionally, we provided preliminary evidence that the combined testing of olfactory mucosa and CSF raised the concordance with clinical diagnosis potentially to 100%. Our results suggest that nasal swabbing might be considered as a first line screening procedure in patients with a diagnosis of suspected dementia with Lewy bodies followed by CSF analysis, as a confirmatory test, when the result in the olfactory mucosa is incongruent with the initial clinical diagnosis.
Background In patients with Parkinson’s disease (PD), real-time quaking-induced conversion (RT-QuIC) detection of pathological α-synuclein (α-syn) in olfactory mucosa (OM) is not as accurate as in other α-synucleinopathies. It is unknown whether these variable results might be related to a different distribution of pathological α-syn in OM. Thus, we investigated whether nasal swab (NS) performed in areas with a different coverage by olfactory neuroepithelium, such as agger nasi (AN) and middle turbinate (MT), might affect the detection of pathological α-syn. Methods NS was performed in 66 patients with PD and 29 non-PD between September 2018 and April 2021. In 43 patients, cerebrospinal fluid (CSF) was also obtained and all samples were analyzed by RT-QuIC for α-syn. Results In the first round, 72 OM samples were collected by NS, from AN (NSAN) or from MT (NSMT), and 35 resulted positive for α-syn RT-QuIC, including 27/32 (84%) from AN, 5/11 (45%) from MT, and 3/29 (10%) belonging to the non-PD patients. Furthermore, 23 additional PD patients underwent NS at both AN and MT, and RT-QuIC revealed α-syn positive in 18/23 (78%) NSAN samples and in 10/23 (44%) NSMT samples. Immunocytochemistry of NS preparations showed a higher representation of olfactory neural cells in NSAN compared to NSMT. We also observed α-syn and phospho-α-syn deposits in NS from PD patients but not in controls. Finally, RT-QuIC was positive in 22/24 CSF samples from PD patients (92%) and in 1/19 non-PD. Conclusion In PD patients, RT-QuIC sensitivity is significantly increased (from 45% to 84%) when NS is performed at AN, indicating that α-syn aggregates are preferentially detected in olfactory areas with higher concentration of olfactory neurons. Although RT-QuIC analysis of CSF showed a higher diagnostic accuracy compared to NS, due to the non-invasiveness, NS might be considered as an ancillary procedure for PD diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.