The B-DNA double helix can dynamically accommodate G–C and A–T base pairs in either Watson-Crick or Hoogsteen configurations. Here, we show that G–C+ and A–U Hoogsteen base pairs are strongly disfavored in A-RNA. As a result, N1-methyl adenosine and N1-methyl guanosine, which occur in DNA as a form of alkylation damage, and in RNA as a posttranscriptional modification, have dramatically different consequences. They create G–C+ and A–U Hoogsteen base pairs in duplex DNA that maintain the structural integrity of the double helix, but block base pairing all together and induce local duplex melting in RNA, providing a mechanism for potently disrupting RNA structure through posttranscriptional modifications. The markedly different propensities to form Hoogsteen base pairs in B-DNA and A-RNA may help meet the opposing requirements of maintaining genome stability on one hand, and dynamically modulating the structure of the epitranscriptome on the other.
Amyloid fibrils are locally ordered protein aggregates that self-assemble under a variety of physiological and in vitro conditions. Their formation is of fundamental interest as a physical chemistry problem and plays a central role in Alzheimer’s disease, Type II diabetes, and other human diseases. As the number of known amyloid fibril structures has grown, the need has arisen for a nomenclature for describing and classifying fibril types, as well as a theoretical description of the physics that gives rise to the self-assembly of these structures. Here, we introduce a systematic nomenclature and coarse-graining methodology for describing the topology of fibrils and other protein aggregates, along with a computational methodology for simulating protein aggregation. Both have mathematical underpinnings in graph theory and statistical mechanics and are consistent with available experimental data on the fibril structure and aggregation kinetics. Our graph representation of the fibril topology enables us to define a network Hamiltonian based on connectivity patterns among monomers rather than detailed intermolecular interactions, greatly speeding up the simulation of large ensembles. Our simulation strategy is capable of recapitulating the formation of all currently known amyloid fibril topologies found in the Protein Data Bank, as well as the formation kinetics of fibrils and oligomers.
Simulations of intrinsically disordered proteins (IDPs) pose numerous challenges to comparative analysis, prominently including highly dynamic conformational states and a lack of well-defined secondary structure. Machine learning (ML) algorithms are especially effective at discriminating among high-dimensional inputs whose differences are extremely subtle, making them well suited to the study of IDPs. In this work, we apply various ML techniques, including support vector machines (SVM) and clustering, as well as related methods such as principal component analysis (PCA) and protein structure network (PSN) analysis, to the problem of uncovering differences between configurational data from molecular dynamics simulations of two variants of the same IDP. We examine molecular dynamics (MD) trajectories of wild-type amyloid beta (Aβ 1−40 ) and its “Arctic” variant (E22G), systems that play a central role in the etiology of Alzheimer's disease. Our analyses demonstrate ways in which ML and related approaches can be used to elucidate subtle differences between these proteins, including transient structure that is poorly captured by conventional metrics.
The milestoning algorithm of Elber and co-workers creates a framework for computing the time scale of processes that are too long and too complex to be studied using simply brute force simulations. The fundamental objects involved in the milestoning algorithm are the first passage time distributions () between adjacent conformational milestones and. The method proposed herein aims to further enhance milestoning (or other interface based sampling methods) by employing an artificially applied force, akin to a wind that blows the trajectories from their initial to their final states, and by subsequently applying corrective weights to the trajectories to yield the true first passage time distributions () in a fraction of the computation time required for unassisted calculations. The re-weighting method is rooted in the formalism of stochastic path integrals. The theoretical basis for the technique and numerical examples are presented.
Amyloid fibril formation is central to the etiology of a wide range of serious human diseases, such as Alzheimer’s disease and prion diseases. Despite an ever growing collection of amyloid fibril structures found in the Protein Data Bank (PDB) and numerous clinical trials, therapeutic strategies remain elusive. One contributing factor to the lack of progress on this challenging problem is incomplete understanding of the mechanisms by which these locally ordered protein aggregates self-assemble in solution. Many current models of amyloid deposition diseases posit that the most toxic species are oligomers that form either along the pathway to forming fibrils or in competition with their formation, making it even more critical to understand the kinetics of fibrillization. A recently introduced topological model for aggregation based on network Hamiltonians is capable of recapitulating the entire process of amyloid fibril formation, beginning with thousands of free monomers and ending with kinetically accessible and thermodynamically stable amyloid fibril structures. The model can be parameterized to match the five topological classes encompassing all amyloid fibril structures so far discovered in the PDB. This paper introduces a set of network statistical and topological metrics for quantitative analysis and characterization of the fibrillization mechanisms predicted by the network Hamiltonian model. The results not only provide insight into different mechanisms leading to similar fibril structures, but also offer targets for future experimental exploration into the mechanisms by which fibrils form.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.