A high-pressure CO2 process applied to ready-to-eat food products guarantees an increase of both their microbial safety and shelf-life. However, the treatment often produces unwanted changes in the visual appearance of products depending on the adopted process conditions. Accordingly, the alteration of the visual appearance influences consumers’ perception and acceptability. This study aims at identifying the optimal treatment conditions in terms of visual appearance by using an artificial vision system. The developed methodology was applied to fresh-cut carrots (Daucus carota) as the test product. The results showed that carrots packaged in 100% CO2 and subsequently treated at 6 MPa and 40 °C for 15 min maintained an appearance similar to the fresh product for up to 7 days of storage at 4 °C. Mild appearance changes were identified at 7 and 14 days of storage in the processed products. Microbiological analysis performed on the optimal treatment condition showed the microbiological stability of the samples up to 14 days of storage at 4 °C. The artificial vision system, successfully applied to the CO2 pasteurization process, can easily be applied to any food process involving changes in the appearance of any food product.
In recent years, monoclonal antibodies (mAbs) are gaining a wide market share as the most impactful bioproducts. The development of mAbs requires extensive experimental campaigns which may last several years and cost billions of dollars. Following the paradigm of Industry 4.0 digitalization, data-driven methodologies are now used to accelerate the development of new biopharmaceutical products. For instance, predictive models can be built to forecast the productivity of the cell lines in the culture in such a way as to anticipate the identification of the cell lines to be progressed in the scale-up exercise. However, the number of experiments that can be performed decreases dramatically as the process scale increases, due to the resources required for each experimental run. This limits the availability of experimental data and, accordingly, the applicability of data-driven methodologies to support the process development. To address this issue in this work we propose the use of digital models to generate in silico data and augment the amount of data available from real (i.e., in vivo) experimental runs, accordingly. In particular, we propose two strategies for in silico data generation to estimate the endpoint product titer in mAbs manufacturing: one based on a first principles model and one on a hybrid semi-parametric model. As a proof of concept, the effect of in silico data generation was investigated on a simulated biopharmaceutical process for the production of mAbs. We obtained very promising results: the digital model effectively supports the identification of high-productive cell lines (i.e., high mAb titer) even when a very low number of real experimental batches (two or three) is available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.