Autophagosome biogenesis requires a localized perturbation of lipid membrane dynamics and a unique protein-lipid conjugate. Autophagy-related (ATG) proteins catalyze this biogenesis on cellular membranes, but the underlying molecular mechanism remains unclear. Focusing on the final step of the protein-lipid conjugation reaction, ATG8/LC3 lipidation, we show how membrane association of the conjugation machinery is organized and fine-tuned at the atomistic level. Amphipathic α-helices in ATG3 proteins (AHATG3) are found to have low hydrophobicity and to be less bulky. Molecular dynamics simulations reveal that AHATG3regulates the dynamics and accessibility of the thioester bond of the ATG3~LC3 conjugate to lipids, allowing covalent lipidation of LC3. Live cell imaging shows that the transient membrane association of ATG3 with autophagic membranes is governed by the less bulky-hydrophobic feature of AHATG3. Collectively, the unique properties of AHATG3facilitate protein-lipid bilayer association leading to the remodeling of the lipid bilayer required for the formation of autophagosomes.
Autophagosome biogenesis requires a localized perturbation of lipid membrane dynamics and a unique protein-lipid conjugate. Autophagy-related (ATG) proteins catalyze this biogenesis on cellular membranes, but the underlying molecular mechanism remains unclear. Focusing on the final step of the protein-lipid conjugation reaction, the ATG8/LC3 lipidation, we show how the membrane association of the conjugation machinery is organized and fine-tuned at the atomistic level. Amphipathic α helices in ATG3 proteins (AH
ATG3
) have low hydrophobicity and contain less bulky residues. Molecular dynamics simulations reveal that AH
ATG3
regulates the dynamics and accessibility of the thioester bond of the ATG3~LC3 conjugate to lipids, enabling the covalent lipidation of LC3. Live-cell imaging shows that the transient membrane association of ATG3 with autophagic membranes is governed by the less bulky-hydrophobic feature of AH
ATG3
. The unique properties of AH
ATG3
facilitate protein-lipid bilayer association, leading to the remodeling of the lipid bilayer required for the formation of autophagosomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.