Several MRI measures have been developed in the last couple of decades, providing a number of imaging biomarkers that can capture the complexity of the pathological processes occurring in multiple sclerosis (MS) brains. Such measures have provided more specific information on the heterogeneous pathologic substrate of MS-related tissue damage, being able to detect, and quantify the evolution of structural changes both within and outside focal lesions. In clinical practise, MRI is increasingly used in the MS field to help to assess patients during follow-up, guide treatment decisions and, importantly, predict the disease course. Moreover, the process of identifying new effective therapies for MS patients has been supported by the use of serial MRI examinations in order to sensitively detect the sub-clinical effects of disease-modifying treatments at an earlier stage than is possible using measures based on clinical disease activity. However, despite this has been largely demonstrated in the relapsing forms of MS, a poor understanding of the underlying pathologic mechanisms leading to either progression or tissue repair in MS as well as the lack of sensitive outcome measures for the progressive phases of the disease and repair therapies makes the development of effective treatments a big challenge. Finally, the role of MRI biomarkers in the monitoring of disease activity and the assessment of treatment response in other inflammatory demyelinating diseases of the central nervous system, such as neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte antibody disease (MOGAD) is still marginal, and advanced MRI studies have shown conflicting results. Against this background, this review focused on recently developed MRI measures, which were sensitive to pathological changes, and that could best contribute in the future to provide prognostic information and monitor patients with MS and other inflammatory demyelinating diseases, in particular, NMOSD and MOGAD.
Metabolic myopathies are rare inherited disorders that deserve more attention from neurologists and pediatricians. Pompe disease and McArdle disease represent some of the most common diseases in clinical practice; however, other less common diseases are now better-known. In general the pathophysiology of metabolic myopathies needs to be better understood. Thanks to the advent of next-generation sequencing (NGS), genetic testing has replaced more invasive investigations and sophisticated enzymatic assays to reach a final diagnosis in many cases. The current diagnostic algorithms for metabolic myopathies have integrated this paradigm shift and restrict invasive investigations for complicated cases. Moreover, NGS contributes to the discovery of novel genes and proteins, providing new insights into muscle metabolism and pathophysiology. More importantly, a growing number of these conditions are amenable to therapeutic approaches such as diets of different kinds, exercise training protocols, and enzyme replacement therapy or gene therapy. Prevention and management—notably of rhabdomyolysis—are key to avoiding serious and potentially life-threatening complications and improving patients’ quality of life. Although not devoid of limitations, the newborn screening programs that are currently mushrooming across the globe show that early intervention in metabolic myopathies is a key factor for better therapeutic efficacy and long-term prognosis. As a whole NGS has largely increased the diagnostic yield of metabolic myopathies, but more invasive but classical investigations are still critical when the genetic diagnosis is unclear or when it comes to optimizing the follow-up and care of these muscular disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.