Under suitable conditions, we show that the Euler characteristic of a foliated Riemannian manifold can be computed only from curvature invariants which are transverse to the leaves. Our proof uses the hypoelliptic sub-Laplacian on forms recently introduced by two of the authors in Baudoin and Grong (Ann Glob Anal Geom 56(2):403–428, 2019).
We obtain a sub-Riemannian version of the classical Gauss-Bonnet theorem. We consider 3 dimensional contact sub-Riemannian manifolds with a corresponding metric extension and obtain a pure sub-Riemannian metric in the limit for subsurfaces. In particular, we are able to recover topological information concentrated around the characteristic set of points where the tangent space to the surface and contact structure coincide.
Under suitable conditions, we show that the Euler characteristic of a foliated Riemannian manifold can be computed only from curvature invariants which are transverse to the leaves. Our proof uses the hypoelliptic sub-Laplacian on forms recently introduced by two of the authors in [4].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.